干旱气象 ›› 2022, Vol. 40 ›› Issue (1): 95-107.DOI: 10.11755/j.issn.1006-7639(2022)-01-0095
马敏劲1,2(), 陈玥2, 康国强2, 赵侦竹2, 黄万龙2, 谈昌蓉2, 丁凡3
收稿日期:
2021-04-07
修回日期:
2021-09-24
出版日期:
2022-02-28
发布日期:
2022-02-28
作者简介:
马敏劲(1983— ),男,博士,云南昭通人,副教授,主要研究方向为大气边界层和空气污染的数值模拟. E-mail: minjinma@lzu.edu.cn。
基金资助:
MA Minjin1,2(), CHEN Yue2, KANG Guoqiang2, ZHAO Zhenzhu2, HUANG Wanlong2, TAN Changrong2, DING Fan3
Received:
2021-04-07
Revised:
2021-09-24
Online:
2022-02-28
Published:
2022-02-28
摘要:
青藏高原对流边界层的热力、动力过程对下游地区甚至整个东亚地区的天气气候有重要影响。以2017年夏季为例分析ERA-Interim、JRA-55和MERRA-2再分析数据在青藏高原边界层研究中的适用性,并进一步利用数值模式物理框架的约束作用来订正其分析误差。2017年夏季青藏高原东南部边界层内,3套再分析资料对于气象要素的描述能力为气温>露点温度>水平风场,研究时段内适用性较好的再分析资料为ERA-Interim。比较12种模式参数化方案组合,模拟结果对于再分析资料在晴空和中雨情景下水平风场的误差离散程度均有明显改善。对于模拟改进的关键物理量水平风场而言,研究时段内本地适用性最高的参数化方案组合是ACM2+WSM6+BMJ。再分析资料中的风场经模拟结果调整后可以更好地描述青藏高原夏季边界层发展,证实模式参数化方案可以减小其在高原地区季节分布偏差。
中图分类号:
马敏劲, 陈玥, 康国强, 赵侦竹, 黄万龙, 谈昌蓉, 丁凡. 青藏高原夏季边界层再分析资料的偏差分析及订正[J]. 干旱气象, 2022, 40(1): 95-107.
MA Minjin, CHEN Yue, KANG Guoqiang, ZHAO Zhenzhu, HUANG Wanlong, TAN Changrong, DING Fan. Deviation analysis of reanalysis data in boundary layer in summer over Tibetan Plateau and its simulation correction[J]. Journal of Arid Meteorology, 2022, 40(1): 95-107.
边界层 方案 | YSU | 对夹卷过程进行显式处理的非局地闭合方案[ |
MYJ | Mellor-Yamada Level 2.5湍流闭合模型[ | |
ACM2 | 通过引入参数fconv将非局地闭合方案与局地涡动扩散方案相结合[ | |
微物理 方案 | Purdue Lin | 水相物质的预报量为6个,分别为水汽、云水、雨、云冰、雪和霰的预报。在结冰点以下,该方案将云水处理为云冰,雨水处理为雪,适合于高分辨率模拟理论研究 |
WSM6 | 基本物理过程与Lin方案相似[ | |
积云对流 方案 | Kain-Fritsch(new Eta) (简称“浅对流KF”) | 浅对流KF方案采用一个简单的云模式和相对粗糙的微物理过程,考虑伴有水汽的上升下沉运动和云中气流的卷入卷出,对于不能到达最小降水云厚度的上升气流做浅对流(非降水)处理[ |
Betts-Miller-Janjic (简称“BMJ”) | 来自Betts-Miller(BM)对流调整计划[ |
表1 试验中对比的模式参数化方案简介
Tab.1 Introduction to the model parameterization schemes compared in the experiment
边界层 方案 | YSU | 对夹卷过程进行显式处理的非局地闭合方案[ |
MYJ | Mellor-Yamada Level 2.5湍流闭合模型[ | |
ACM2 | 通过引入参数fconv将非局地闭合方案与局地涡动扩散方案相结合[ | |
微物理 方案 | Purdue Lin | 水相物质的预报量为6个,分别为水汽、云水、雨、云冰、雪和霰的预报。在结冰点以下,该方案将云水处理为云冰,雨水处理为雪,适合于高分辨率模拟理论研究 |
WSM6 | 基本物理过程与Lin方案相似[ | |
积云对流 方案 | Kain-Fritsch(new Eta) (简称“浅对流KF”) | 浅对流KF方案采用一个简单的云模式和相对粗糙的微物理过程,考虑伴有水汽的上升下沉运动和云中气流的卷入卷出,对于不能到达最小降水云厚度的上升气流做浅对流(非降水)处理[ |
Betts-Miller-Janjic (简称“BMJ”) | 来自Betts-Miller(BM)对流调整计划[ |
高 度 | 气象要素 | ERA-Interim | JRA-55 | MERRA-2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bias | RMSE | STDE | Bias | RMSE | STDE | Bias | RMSE | STDE | ||||
地面 | T/℃ | -5.01 | 6.07 | 3.15 | -3.67 | 4.77 | 2.62 | -5.49 | 6.80 | 3.84 | ||
Td/℃ | -0.85 | 3.62 | 3.12 | -269.68 | 271.31 | 26.22 | -1.74 | 4.06 | 3.55 | |||
DIR/(°) | 44.67 | 145.77 | 129.33 | 40.64 | 142.31 | 120.59 | 55.14 | 145.58 | 125.18 | |||
SPD/(m·s-1) | 0.77 | 4.00 | 3.66 | -2.01 | 4.00 | 3.33 | 1.08 | 4.41 | 4.07 | |||
500 hPa | T/℃ | -0.74 | 1.51 | 1.28 | -0.92 | 1.53 | 1.19 | 0.13 | 1.25 | 1.21 | ||
Td/℃ | -2.83 | 4.99 | 4.06 | -259.26 | 262.24 | 38.35 | — | — | — | |||
DIR/(°) | -0.67 | 88.82 | 88.64 | 3.09 | 83.06 | 82.15 | -4.87 | 86.05 | 85.64 | |||
SPD/(m·s-1) | -1.25 | 6.03 | 5.81 | -6.22 | 8.51 | 5.72 | -0.05 | 6.62 | 6.54 | |||
400 hPa | T/℃ | -0.08 | 3.99 | 3.92 | -0.07 | 3.84 | 3.81 | — | — | — | ||
Td/℃ | -0.42 | 12.15 | 11.98 | -243.54 | 246.76 | 39.06 | — | — | — | |||
DIR/(°) | 6.56 | 81.07 | 80.30 | -6.08 | 85.68 | 83.70 | — | — | — | |||
SPD/(m·s-1) | -1.42 | 11.66 | 11.46 | -8.21 | 15.27 | 11.93 | — | — | — |
表2 再分析资料在青藏高原大气边界层气象要素的探空检验
Tab.2 Sounding test of meteorological elements in PBL (planetary boundary layer) of the Tibet Plateau based on reanalysis data
高 度 | 气象要素 | ERA-Interim | JRA-55 | MERRA-2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bias | RMSE | STDE | Bias | RMSE | STDE | Bias | RMSE | STDE | ||||
地面 | T/℃ | -5.01 | 6.07 | 3.15 | -3.67 | 4.77 | 2.62 | -5.49 | 6.80 | 3.84 | ||
Td/℃ | -0.85 | 3.62 | 3.12 | -269.68 | 271.31 | 26.22 | -1.74 | 4.06 | 3.55 | |||
DIR/(°) | 44.67 | 145.77 | 129.33 | 40.64 | 142.31 | 120.59 | 55.14 | 145.58 | 125.18 | |||
SPD/(m·s-1) | 0.77 | 4.00 | 3.66 | -2.01 | 4.00 | 3.33 | 1.08 | 4.41 | 4.07 | |||
500 hPa | T/℃ | -0.74 | 1.51 | 1.28 | -0.92 | 1.53 | 1.19 | 0.13 | 1.25 | 1.21 | ||
Td/℃ | -2.83 | 4.99 | 4.06 | -259.26 | 262.24 | 38.35 | — | — | — | |||
DIR/(°) | -0.67 | 88.82 | 88.64 | 3.09 | 83.06 | 82.15 | -4.87 | 86.05 | 85.64 | |||
SPD/(m·s-1) | -1.25 | 6.03 | 5.81 | -6.22 | 8.51 | 5.72 | -0.05 | 6.62 | 6.54 | |||
400 hPa | T/℃ | -0.08 | 3.99 | 3.92 | -0.07 | 3.84 | 3.81 | — | — | — | ||
Td/℃ | -0.42 | 12.15 | 11.98 | -243.54 | 246.76 | 39.06 | — | — | — | |||
DIR/(°) | 6.56 | 81.07 | 80.30 | -6.08 | 85.68 | 83.70 | — | — | — | |||
SPD/(m·s-1) | -1.42 | 11.66 | 11.46 | -8.21 | 15.27 | 11.93 | — | — | — |
图2 ERA-Interim再分析资料得到的边界层高度季节平均空间分布(单位:m)
Fig.2 Spatial distribution of seasonal average PBLH (planetary boundary layer height) obtained from ERA-Interim (Unit: m)
模式 区域 | X、Y方向 格点数 | 网格距/ km | 左下角网格点 在母域位置 | 地形资料 分辨率 |
---|---|---|---|---|
D01 | 163×88 | 27 | 1×1 | 10' |
D02 | 367×160 | 9 | 61×8 | 2' |
D03 | 367×226 | 3 | 122×24 | 30″ |
表3 模式嵌套区域设置
Tab.3 Parameters for nested domains
模式 区域 | X、Y方向 格点数 | 网格距/ km | 左下角网格点 在母域位置 | 地形资料 分辨率 |
---|---|---|---|---|
D01 | 163×88 | 27 | 1×1 | 10' |
D02 | 367×160 | 9 | 61×8 | 2' |
D03 | 367×226 | 3 | 122×24 | 30″ |
ACM2 | BMJ | KF | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LIN | WSM6 | LIN | WSM6 | |||||||||||||
Bias | RMSE | STDE | Bias | RMSE | STDE | Bias | RMSE | STDE | Bias | RMSE | STDE | |||||
地面 | T/℃ | -4.28 | 6.22 | 3.39 | -3.88 | 5.83 | 3.13 | -4.85 | 6.53 | 3.14 | -4.66 | 6.30 | 3.03 | |||
Td/℃ | -268.40 | 271.73 | 19.61 | -267.96 | 271.29 | 20.14 | -267.65 | 270.98 | 19.86 | -267.53 | 270.86 | 19.78 | ||||
DIR/(°) | 68.30 | 137.99 | 98.24 | 57.31 | 119.42 | 84.83 | 60.94 | 129.73 | 84.79 | 59.07 | 136.47 | 91.74 | ||||
SPD/(m·s-1) | -1.67 | 3.70 | 3.06 | -1.44 | 3.45 | 2.94 | -1.84 | 3.72 | 3.04 | -1.55 | 3.91 | 3.38 | ||||
500 hPa | T/℃ | 1.99 | 2.58 | 1.64 | 1.45 | 2.00 | 1.25 | 0.29 | 1.28 | 1.12 | 0.73 | 1.48 | 1.20 | |||
Td/℃ | -271.96 | 271.97 | 1.93 | -265.47 | 268.76 | 19.33 | -264.70 | 267.98 | 19.20 | -264.95 | 268.23 | 19.36 | ||||
DIR/(°) | -32.08 | 53.78 | 43.16 | -10.33 | 35.85 | 34.33 | -17.69 | 64.53 | 61.29 | -18.20 | 66.82 | 62.35 | ||||
SPD/(m·s-1) | 1.06 | 4.70 | 4.57 | -1.19 | 3.96 | 3.47 | -2.23 | 4.50 | 3.53 | -1.44 | 3.71 | 3.15 | ||||
400 hPa | T/℃ | 1.06 | 1.35 | 0.83 | 0.70 | 1.33 | 0.97 | 0.37 | 1.15 | 1.00 | 0.51 | 1.23 | 1.01 | |||
Td/℃ | -273.25 | 273.26 | 1.89 | -266.69 | 270.00 | 20.90 | -268.25 | 271.55 | 19.84 | -267.97 | 271.27 | 20.58 | ||||
DIR/(°) | -16.79 | 53.03 | 50.31 | 1.91 | 81.31 | 68.46 | -9.83 | 88.49 | 80.85 | -6.50 | 92.04 | 84.98 | ||||
SPD/(m·s-1) | -0.01 | 6.27 | 6.27 | -0.06 | 4.93 | 4.83 | -0.90 | 5.80 | 4.68 | -1.00 | 5.55 | 4.66 | ||||
YSU | BMJ | KF | ||||||||||||||
LIN | WSM6 | LIN | WSM6 | |||||||||||||
Bias | RMSE | STDE | Bias | RMSE | STDE | Bias | RMSE | STDE | Bias | RMSE | STDE | |||||
地面 | T/℃ | -3.69 | 5.38 | 2.84 | -3.71 | 5.41 | 2.83 | -4.42 | 6.03 | 2.83 | -4.44 | 6.00 | 2.87 | |||
Td/℃ | -268.38 | 271.72 | 19.78 | -267.64 | 270.98 | 20.37 | -267.01 | 270.34 | 20.00 | -267.16 | 270.49 | 19.92 | ||||
DIR/(°) | 49.75 | 125.55 | 84.80 | 59.67 | 130.73 | 86.27 | 57.42 | 122.82 | 89.87 | 67.45 | 137.31 | 94.38 | ||||
SPD/(m·s-1) | -1.49 | 3.87 | 3.23 | -1.44 | 3.96 | 3.39 | -1.70 | 3.82 | 3.15 | -1.62 | 3.95 | 3.31 | ||||
500 hPa | T/℃ | 1.73 | 2.05 | 1.06 | 1.73 | 2.14 | 1.20 | 0.67 | 1.30 | 1.07 | 0.72 | 1.36 | 1.11 | |||
Td/℃ | -265.85 | 269.15 | 19.27 | -265.54 | 268.85 | 19.51 | -264.76 | 268.05 | 19.21 | -264.72 | 268.01 | 19.16 | ||||
DIR/(°) | -14.77 | 77.16 | 69.83 | -16.65 | 65.83 | 60.23 | -26.77 | 69.12 | 58.85 | -10.31 | 70.30 | 68.60 | ||||
SPD/(m·s-1) | -1.36 | 5.03 | 4.41 | -1.93 | 4.78 | 4.15 | -2.81 | 4.46 | 3.19 | -3.31 | 5.09 | 3.44 | ||||
400 hPa | T/℃ | 0.85 | 1.42 | 0.97 | 0.90 | 1.44 | 0.94 | 0.60 | 1.20 | 0.88 | 0.68 | 1.27 | 0.91 | |||
Td/℃ | -267.32 | 270.66 | 21.61 | -266.74 | 270.06 | 20.63 | -268.96 | 272.27 | 20.25 | -268.59 | 271.91 | 20.46 | ||||
DIR/(°) | -4.77 | 96.53 | 81.67 | -7.29 | 86.21 | 70.69 | -9.28 | 88.34 | 81.79 | -16.95 | 92.12 | 81.35 | ||||
SPD/(m·s-1) | -0.90 | 5.98 | 5.61 | -1.11 | 6.09 | 5.92 | -2.00 | 5.52 | 4.60 | -2.03 | 5.73 | 4.93 |
表4 模拟时段内边界层12个组合方案中主要8个组合方案的模拟要素在5站点的平均值检验
Tab.4 Test of mean values of meteorological elements at 5 sites simulated by main 8 scheme-combinations among 12 scheme-combinations in PBL during the simulation period
ACM2 | BMJ | KF | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LIN | WSM6 | LIN | WSM6 | |||||||||||||
Bias | RMSE | STDE | Bias | RMSE | STDE | Bias | RMSE | STDE | Bias | RMSE | STDE | |||||
地面 | T/℃ | -4.28 | 6.22 | 3.39 | -3.88 | 5.83 | 3.13 | -4.85 | 6.53 | 3.14 | -4.66 | 6.30 | 3.03 | |||
Td/℃ | -268.40 | 271.73 | 19.61 | -267.96 | 271.29 | 20.14 | -267.65 | 270.98 | 19.86 | -267.53 | 270.86 | 19.78 | ||||
DIR/(°) | 68.30 | 137.99 | 98.24 | 57.31 | 119.42 | 84.83 | 60.94 | 129.73 | 84.79 | 59.07 | 136.47 | 91.74 | ||||
SPD/(m·s-1) | -1.67 | 3.70 | 3.06 | -1.44 | 3.45 | 2.94 | -1.84 | 3.72 | 3.04 | -1.55 | 3.91 | 3.38 | ||||
500 hPa | T/℃ | 1.99 | 2.58 | 1.64 | 1.45 | 2.00 | 1.25 | 0.29 | 1.28 | 1.12 | 0.73 | 1.48 | 1.20 | |||
Td/℃ | -271.96 | 271.97 | 1.93 | -265.47 | 268.76 | 19.33 | -264.70 | 267.98 | 19.20 | -264.95 | 268.23 | 19.36 | ||||
DIR/(°) | -32.08 | 53.78 | 43.16 | -10.33 | 35.85 | 34.33 | -17.69 | 64.53 | 61.29 | -18.20 | 66.82 | 62.35 | ||||
SPD/(m·s-1) | 1.06 | 4.70 | 4.57 | -1.19 | 3.96 | 3.47 | -2.23 | 4.50 | 3.53 | -1.44 | 3.71 | 3.15 | ||||
400 hPa | T/℃ | 1.06 | 1.35 | 0.83 | 0.70 | 1.33 | 0.97 | 0.37 | 1.15 | 1.00 | 0.51 | 1.23 | 1.01 | |||
Td/℃ | -273.25 | 273.26 | 1.89 | -266.69 | 270.00 | 20.90 | -268.25 | 271.55 | 19.84 | -267.97 | 271.27 | 20.58 | ||||
DIR/(°) | -16.79 | 53.03 | 50.31 | 1.91 | 81.31 | 68.46 | -9.83 | 88.49 | 80.85 | -6.50 | 92.04 | 84.98 | ||||
SPD/(m·s-1) | -0.01 | 6.27 | 6.27 | -0.06 | 4.93 | 4.83 | -0.90 | 5.80 | 4.68 | -1.00 | 5.55 | 4.66 | ||||
YSU | BMJ | KF | ||||||||||||||
LIN | WSM6 | LIN | WSM6 | |||||||||||||
Bias | RMSE | STDE | Bias | RMSE | STDE | Bias | RMSE | STDE | Bias | RMSE | STDE | |||||
地面 | T/℃ | -3.69 | 5.38 | 2.84 | -3.71 | 5.41 | 2.83 | -4.42 | 6.03 | 2.83 | -4.44 | 6.00 | 2.87 | |||
Td/℃ | -268.38 | 271.72 | 19.78 | -267.64 | 270.98 | 20.37 | -267.01 | 270.34 | 20.00 | -267.16 | 270.49 | 19.92 | ||||
DIR/(°) | 49.75 | 125.55 | 84.80 | 59.67 | 130.73 | 86.27 | 57.42 | 122.82 | 89.87 | 67.45 | 137.31 | 94.38 | ||||
SPD/(m·s-1) | -1.49 | 3.87 | 3.23 | -1.44 | 3.96 | 3.39 | -1.70 | 3.82 | 3.15 | -1.62 | 3.95 | 3.31 | ||||
500 hPa | T/℃ | 1.73 | 2.05 | 1.06 | 1.73 | 2.14 | 1.20 | 0.67 | 1.30 | 1.07 | 0.72 | 1.36 | 1.11 | |||
Td/℃ | -265.85 | 269.15 | 19.27 | -265.54 | 268.85 | 19.51 | -264.76 | 268.05 | 19.21 | -264.72 | 268.01 | 19.16 | ||||
DIR/(°) | -14.77 | 77.16 | 69.83 | -16.65 | 65.83 | 60.23 | -26.77 | 69.12 | 58.85 | -10.31 | 70.30 | 68.60 | ||||
SPD/(m·s-1) | -1.36 | 5.03 | 4.41 | -1.93 | 4.78 | 4.15 | -2.81 | 4.46 | 3.19 | -3.31 | 5.09 | 3.44 | ||||
400 hPa | T/℃ | 0.85 | 1.42 | 0.97 | 0.90 | 1.44 | 0.94 | 0.60 | 1.20 | 0.88 | 0.68 | 1.27 | 0.91 | |||
Td/℃ | -267.32 | 270.66 | 21.61 | -266.74 | 270.06 | 20.63 | -268.96 | 272.27 | 20.25 | -268.59 | 271.91 | 20.46 | ||||
DIR/(°) | -4.77 | 96.53 | 81.67 | -7.29 | 86.21 | 70.69 | -9.28 | 88.34 | 81.79 | -16.95 | 92.12 | 81.35 | ||||
SPD/(m·s-1) | -0.90 | 5.98 | 5.61 | -1.11 | 6.09 | 5.92 | -2.00 | 5.52 | 4.60 | -2.03 | 5.73 | 4.93 |
图5 不同参数化方案组合模拟的D03区域2017年7月地面感热通量(a)、地气温差(b)及边界层高度(c)平均值的时间序列
Fig.5 Time series of mean surface sensible heat flux (a),temperature difference between ground and air (b) and PBLH (c) in D03 area in July 2017 simulated by different parameterization scheme combinations
图6 第三层嵌套区域边界层内不同层次的水平风场分布 (左边两列为2017年7月22日代表晴空日,右边两列为2017年7月25日代表降水日)
Fig.6 Distribution of horizontal wind field at different levels in PBL in D03 area (Two columns on the left represent a clear sky day on July 22, 2017,two columns on the right represent a rainfall day on July 25, 2017)
气压层 | 风场分量 | 回归方程 |
---|---|---|
650 hPa | u v | y=0.5971x-0.2718 y=0.3587x-0.5021 |
600 hPa | u v | y=0.6862x-0.6789 y=0.5332x+0.4957 |
550 hPa | u v | y=0.7070x-0.7743 y=0.5603x+0.2587 |
500 hPa | u v | y=0.7076x-0.6419 y=0.4468x+0.4335 |
450 hPa | u v | y=0.7578x-0.8596 y=0.4342x+0.2031 |
400 hPa | u v | y=0.7375x+1.4138 y=0.4828x-0.2449 |
表5 ERA-Interim边界层内水平风场与模拟风场间的一元线性回归方程
Tab.5 Unitary linear regression equations between horizontal wind fields in PBL from ERA-Interim and simulated wind fields
气压层 | 风场分量 | 回归方程 |
---|---|---|
650 hPa | u v | y=0.5971x-0.2718 y=0.3587x-0.5021 |
600 hPa | u v | y=0.6862x-0.6789 y=0.5332x+0.4957 |
550 hPa | u v | y=0.7070x-0.7743 y=0.5603x+0.2587 |
500 hPa | u v | y=0.7076x-0.6419 y=0.4468x+0.4335 |
450 hPa | u v | y=0.7578x-0.8596 y=0.4342x+0.2031 |
400 hPa | u v | y=0.7375x+1.4138 y=0.4828x-0.2449 |
站名 | 地面 | 500 hPa | 400 hPa | |||||
---|---|---|---|---|---|---|---|---|
DIR/(°) (减率) | SPD/(m·s-1) (减率) | DIR/(°) (减率) | SPD/(m·s-1) (减率) | DIR/(°) (减率) | SPD/(m·s-1) (减率) | |||
昌都 | 158.97(-27%) | 3.84(-22%) | 72.75(8%) | 3.17(56%) | 115.56(-122%) | 2.48(52%) | ||
甘孜 | 127.73(23%) | 4.11(-8%) | 74.99(13%) | 4.32(42%) | 74.36(-7%) | 32.34(86%) | ||
拉萨 | 75.97(35%) | 1.58(55%) | 32.03(61%) | 3.20(28%) | 37.17(61%) | 4.06(38%) | ||
那曲 | 120.70(42%) | 3.80(13%) | 73.53(61%) | 4.86(38%) | 76.63(54%) | 4.37(15%) | ||
玉树 | 123.27 (21%) | 2.38(35%) | 36.06(73%) | 4.56(45%) | 80.45(22%) | 6.76(24%) | ||
区域平均 | 105.28(19%) | 3.11(15%) | 47.01(47%) | 3.29(43%) | 69.63(13%) | 4.33(62%) |
表6 模拟时段内拟合风场的探空检验STDE值及其相对于原始再分析资料的减率
Tab.6 Sounding test STDE value of fitted wind field during the simulation period and its reduction rate relative to original reanalysis data
站名 | 地面 | 500 hPa | 400 hPa | |||||
---|---|---|---|---|---|---|---|---|
DIR/(°) (减率) | SPD/(m·s-1) (减率) | DIR/(°) (减率) | SPD/(m·s-1) (减率) | DIR/(°) (减率) | SPD/(m·s-1) (减率) | |||
昌都 | 158.97(-27%) | 3.84(-22%) | 72.75(8%) | 3.17(56%) | 115.56(-122%) | 2.48(52%) | ||
甘孜 | 127.73(23%) | 4.11(-8%) | 74.99(13%) | 4.32(42%) | 74.36(-7%) | 32.34(86%) | ||
拉萨 | 75.97(35%) | 1.58(55%) | 32.03(61%) | 3.20(28%) | 37.17(61%) | 4.06(38%) | ||
那曲 | 120.70(42%) | 3.80(13%) | 73.53(61%) | 4.86(38%) | 76.63(54%) | 4.37(15%) | ||
玉树 | 123.27 (21%) | 2.38(35%) | 36.06(73%) | 4.56(45%) | 80.45(22%) | 6.76(24%) | ||
区域平均 | 105.28(19%) | 3.11(15%) | 47.01(47%) | 3.29(43%) | 69.63(13%) | 4.33(62%) |
[1] | 张强. 大气边界层气象学研究综述[J]. 干旱气象, 2003, 21(3):74-78. |
[2] |
ZHANG Wanchun, GUO Jianping, MIAO Yucong, et al. On the summer-time planetary boundary layer with different thermodynamic stability in China: a radiosonde perspective[J]. Journal of Climate, 2018, 31:1451-1464.
DOI URL |
[3] | 叶笃正, 高由禧. 青藏高原气象学[M]. 北京: 科学出版社, 1979. |
[4] | CHEN Xuelong. The deep atmospheric boundary layer and its significance to the stratosphere and troposphere exchange over the Tibetan Plateau[J]. PlOS one, 2013, 8(2):1-9. |
[5] |
STENSRUD D J. Elevated residual layers and their influence on surface boundary-layer evolution[J]. Journal of the Atmospheric Sciences, 1993, 50(14):2284-2293.
DOI URL |
[6] | LI Yueqing, GAO Wenliang. Atmospheric boundary layer circulation on the eastern edge of the Tibetan plateau, China, in summer[J]. Arctic Antarctic & Alpine Research, 2007, 39(4):708-713. |
[7] |
TAO Shiyan, DING Yihui. Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China[J]. Bulletin of the American Meteorological Society, 1981, 62(1):23-30.
DOI URL |
[8] |
FU Rong, HU Yuanlong, JONATHON S Wright, et al. From the cover: short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan plateau[J]. Proceedings of the National Academy of Sciences of the United States of America 2006, 103(15):5664-5669.
PMID |
[9] |
WILLIAM R Boos, KUANG Zhiming. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating[J]. Nature, 2010, 463(7278):218-222.
DOI URL |
[10] |
AN Zhisheng, KUTZBACH J E, PRELL W L, et al. Evolution of Asian monsoons an phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times[J]. Nature, 2001, 411(6833):62-66.
DOI URL |
[11] | 徐祥德, 陈联寿. 青藏高原大气科学试验研究进展[J]. 应用气象学报, 2006, 17(6):756-772. |
[12] | LI Maoshan, MA Yaoming, MA Weiqiang, et al. Different characteristics of the structure of atmospheric boundary layer between dry and rainy periods over the northern Tibetan Plateau[J]. Sciences in Cold & Arid Regions, 2011, 3(6):509-516. |
[13] |
ZUO Hongchao, HU Yinqiao, LI Dongliang. Seasonal transition and its boundary layer characteristics in Anduo area of Tibetan Plateau[J]. Progress in Natural Science:Materials International, 2005, 15(3):239-245.
DOI URL |
[14] | 李英, 胡志莉, 赵红梅. 青藏高原大气边界层结构特征研究综述[J]. 高原山地气象研究, 2012, 32(4):91-96. |
[15] | 王蓉, 张强, 岳平, 等. 大气边界层数值模拟研究与未来展望[J]. 地球科学进展, 2020, 35(4):331-349. |
[16] | 王斌. 高原地区NASA与NCEP再分析资料对比和南亚高压活动及其旱涝影响分析[D]. 北京:中国气象科学研究院, 2011. |
[17] |
除多, 杨勇, 罗布坚参, 等. MERRA再分析地面气温产品在青藏高原的适用性分析[J]. 高原气象, 2016, 35(2):337-350.
DOI |
[18] |
秦艳慧, 吴通华, 李韧, 等. ERA-Interim地表温度资料在青藏高原多年冻土区的适用性[J]. 高原气象, 2015, 34(3):666-675.
DOI |
[19] |
ZHAO Tianbao, GUO Weidong, FU Congbin. Calibrating and ealuating ranalysis srface tmperature eror by tpographic correction[J]. Journal of Climate, 2006, 21(6):1440-1446.
DOI URL |
[20] | 赵天保, 符淙斌. 中国区域ERA-40、NCEP-2再分析资料与观测资料的初步比较与分析[J]. 气候与环境研究, 2006, 11(1):14-32. |
[21] |
孙玉婷, 高庆九, 闵锦忠. 再分析温度资料与西藏地区冬、夏季观测气温的比较[J]. 高原气象, 2013, 32(4):909-920.
DOI |
[22] | 刘自牧, 李国平. 高原切变线的客观识别与时空分布的统计分析[J]. 大气科学, 2019, 43(1):13-26. |
[23] |
谢欣汝, 游庆龙, 保云涛, 等. 基于多源数据的青藏高原夏季降水与水汽输送的联系[J]. 高原气象, 2018, 37(1):78-92.
DOI |
[24] | 张强, 王蓉, 岳平, 等. 复杂条件陆-气相互作用研究领域有关科学问题探讨[J]. 气象学报, 2017, 75(1):39-56. |
[25] | 王秀明, 俞小鼎, 朱禾. NCEP再分析资料在强对流环境分析中的应用[J]. 应用气象学报, 2012, 23(2):139-146. |
[26] | 吴琼, 桂保玉, 徐卫民. 江西省山地风场风速订正方法研究[J]. 气象与环境科学, 2019, 42(1):47-53. |
[27] | 李斐, 邹捍, 周立波, 等. WRF模式中边界层参数化方案在藏东南复杂下垫面适用性研究[J]. 高原气象, 2016, 36(2):340-357. |
[28] | 朱士超, 银燕, 金莲姬, 等. 青藏高原一次强对流过程对水汽垂直输送的数值模拟[J]. 大气科学, 2011, 35(6):1057-1068. |
[29] |
MA Minjin, PU Zhaoxia, WANG Shigong, et al. Characteristics and numerical simulations of extremely large atmospheric boundary-layer heights over an arid region in north-west China[J]. Boundary-Layer Meteorology, 2011, 140(1):163-176.
DOI URL |
[30] |
CARVALHO D, ROCHA A, GÓMEZ-GESTEIRA M, et al. Sensitivity of the WRF model wind simulation and wind energy production estimates to planetary boundary layer parameterizations for onshore and offshore areas in the Iberian Peninsula[J]. Applied Energy, 2014, 135(2):234-246.
DOI URL |
[31] |
GARCIA-DIEZ M, FERNÁNDEZ J, FITA L, et al. Seasonal dependence of WRF model biases and sensitivity to PBL schemes over Europe[J]. Quarterly Journal of the Royal Meteorological Society, 2013, 139(671):501-514.
DOI URL |
[32] |
HU Xiaoming, JOHN W. Nielsen-Gammon, et al. Evaluation of tree planetary boundary layer schemes in the WRF model[J]. Journal of Applied Meteorology and Climatology, 2010, 49(9):1831-1844.
DOI URL |
[33] |
DEE D P, UPPALA S M, SIMMONS A J, et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(656):553-597.
DOI URL |
[34] |
KOBAYASHI Shinya, OTA Yukinari, HARADA Yayoi, et al. The JRA-55 reanalysis: general specifications and basic characteristics[J]. Journal of the Meteorological Society of Japan Ser II, 2015, 93(1):5-48.
DOI URL |
[35] | GELARO Ronald, MCCARTY Will, SUAREZ MAX J, et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2)[J]. Journal of Climate, 2017, 30(14):1-105. |
[36] |
HONG S Y, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 2006, 134(9):2318-2341.
DOI URL |
[37] |
NOH Yign, CHEON Woo Geun, RAASCH Siegfried. The role of preconditioning in the evolution of open-ocean deep convection[J]. Journal of Physical Oceanography, 2003, 33(6):1145-1166.
DOI URL |
[38] | 王颖, 张镭, 胡菊, 等. WRF模式对山谷城市边界层模拟能力的检验及地面气象特征分析[J]. 高原气象, 2010, 29(6):1397-1407. |
[39] |
JANJIC Zavisa. The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes[J]. Monthly Weather Review, 1994, 122:927-945.
DOI URL |
[40] |
PLEIM Jonathan E. A combined local and nonlocal closure model for the atmospheric boundary layer. part I: model description and testing[J]. Journal of Applied Meteorology and Climatology, 2007, 46(9):1383-1395.
DOI URL |
[41] |
HOLTSALG A A M, BOVILLE B A. Local versus nonlocal boundary-layer diffusion in a global climate model[J]. Journal of Climate, 1993, 6(10):1825-1842.
DOI URL |
[42] | HONG Songyou, LIM Jeong-Ock Jade. The WRF single-moment 6-class microphsics scheme (WSM6)[J]. Journal of the Korean Meteorological Society, 2006, 42(2):129-151. |
[43] |
LIN L, FARLEY R D, ORVILLE H D. Bulk parameterization of the snow field in a cloud model[J]. Journal of Climate and Applied Meteorology, 1983, 22(6):1065-1092.
DOI URL |
[44] |
HONG S Y, DUDHIA J, CHEN S H. A revised approach to ice-microphysical processes for the bulk parameterization of cloud and precipitation[J]. Monthly Weather Review, 2004, 132:103-120.
DOI URL |
[45] |
KAIN John S. The kain-fritch convective parameterization: an update[J]. Journal of Applied Meteorology, 2004, 43(1):170-181.
DOI URL |
[46] |
JANJIC Zavisa. Comments on “development and evaluation of a convection scheme for use in climate models”[J]. Journal of the Atmospheric Sciences, 2000, 57:3686-3686.
DOI URL |
[47] | BETTS A K. A new convective adjustment scheme. part I: observational and theoretical basis[J]. Quarterly Journal of the Royal Meteorological Society, 1986, 112(473):677-691. |
[48] | BETTS A K, MILLER M J. A new convective adjustment scheme. part II: single column tests using GATE wave, BOMEX and arctic air-mass data sets[J]. Quarterly Journal of the Royal Meteorological Society, 1986, 112:693-709. |
[49] |
朱智, 师春香, 张涛, 等. 四套再分析土壤湿度资料在中国区域的适用性分析[J]. 高原气象, 2018, 37(1):240-252.
DOI |
[50] |
MA Minjin, TAN Ziyuan, DING Fan, et al. Spatial characteristics of deep-developed boundary layers and numerical simulation applicability over arid and semi-arid regions in northwest China[J]. Atmosphere, 2019, 10(4):195-219.
DOI URL |
[51] | GUO Jianping, MIAO Yucong, ZHANG Yong, et al. The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data[J]. Atmospheric Chemistry & Physics, 2016, 16(20):133 09-133 19. |
[52] |
VOGELEZANG D H P, HOLTSLAG A A M. Evaluation and model impacts of alternative boundary-layer height formulations[J]. Boundary-Layer Meteorology, 1996, 81(3/4):245-269.
DOI URL |
[53] |
DUDHIA Jimy. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. Journal of the Atmospheric Sciences, 1989, 46(20):3077-3107.
DOI URL |
[54] |
MLAWER Eli J, TAUBMAN Steven J, BROWN Patrick D, et al. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D14):166 63-16 682.
DOI URL |
[55] |
CHEN Fei, DUDHIA Jimy. Coupling an advanced land surface-hydrology model with the penn state-NCAR MM5 modeling system. part I: model implementation and sensitivity[J]. Monthly Weather Review, 2001, 129(4):569-585.
DOI URL |
[56] | 马严枝, 陆昌根, 高守亭. 8·19华北暴雨模拟中微物理方案的对比试验[J]. 大气科学, 2012, 36(4):835-850. |
[57] | 何由, 阳坤, 姚檀栋, 等. 基于WRF模式对青藏高原一次强降水的模拟[J]. 高原气象, 2012, 31(5):1183-1191. |
[1] | 冯箫,李勋,杨薇,张春花. 2018年2月琼州海峡一次持续性海雾过程特征分析[J]. 干旱气象, 2021, 39(5): 785-795. |
[2] | 杨振鑫, 祁萍, 孙磊, 崔小平, 赵月兰. 青藏高原东北侧短时强降水阈值确定及特征分析[J]. 干旱气象, 2021, 39(4): 563-568. |
[3] | 张海宏, 石明明, 吴昊, 祁栋林, 权晨. 基于ERA-Interim资料的青海省空中云水资源评估[J]. 干旱气象, 2021, 39(4): 569-576. |
[4] | 卿清涛, 刘佳, 李小兰, 罗玉, 郭海燕, 甘薇薇, 孙彧. 四川盆地一次持续性雾霾天气演变特征及其成因[J]. 干旱气象, 2021, 39(4): 610-619. |
[5] | 张亚春, 马耀明, 马伟强, 王宾宾, 王玉阳, . 青藏高原不同下垫面蒸散量及其与气象因子的相关性[J]. 干旱气象, 2021, 39(3): 366-373. |
[6] | 王春红, 谭艳梅, 王清平, 陈阳权. 乌鲁木齐机场持续浓雾天气垂直风场特征分析[J]. 干旱气象, 2021, 39(3): 457-465. |
[7] | 任雍, 陈赛, 余安安, 范梦奇. 相干多普勒测风激光雷达反演厦门市风场及边界层高度的可靠性分析[J]. 干旱气象, 2021, 39(3): 514-523. |
[8] | 郑然, 刘嘉慧敏, 王春学, 李栋梁, 唐红玉, 刘博. 华西南区秋雨异常及其对青藏高原冬季大气冷源的响应[J]. 干旱气象, 2021, 39(2): 225-234. |
[9] | 王溪雯, 张飞民, 王芝兰, 杨凯, 王澄海. 青藏高原西部一次高原涡生成的数值模拟研究[J]. 干旱气象, 2021, 39(1): 54-64. |
[10] | 徐丽娜, 李忠, 胡亚男, 谷新波. 2019年冬季呼和浩特市大气污染频发的气象条件分析[J]. 干旱气象, 2021, 39(1): 112-118. |
[11] | 李汉林, 何清, 金莉莉. 塔克拉玛干沙漠腹地和北缘典型天气近地层风速廓线特征[J]. 干旱气象, 2020, 38(6): 965-978. |
[12] | 任桂萍, 魏雅鹏, 柯伟, 乔戈, 万占鑫, 梁小刚. 甘肃酒泉地区大气边界层高度变化特征及其与沙尘天气的关系[J]. 干旱气象, 2020, 38(6): 979-986. |
[13] | 任余龙, 张铁军, 柳媛普, 吴晶. 夏季风过渡区下垫面非均匀性对一次暴雨影响的数值模拟[J]. 干旱气象, 2020, 38(5): 755-763. |
[14] | 齐亚杰, 陈敏, 仲跻芹, 范水勇, 刘瑞婷, 郭淳薇. RMAPS-ST耦合城市冠层模式后对华北地面气象要素的短期预报评估[J]. 干旱气象, 2020, 38(5): 859-868. |
[15] | 杨侃, 纪晓玲, 毛璐, 张肃诏. 贺兰山两次特大致洪暴雨的数值模拟与地形影响对比[J]. 干旱气象, 2020, 38(4): 581-590. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
陇ICP备09004376
Copyright © 2019 《干旱气象》 编辑部
地址: 甘肃省兰州市东岗东路2070号,中国气象局兰州干旱气象研究所 730020
电话: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com
技术支持: 北京玛格泰克科技发展有限公司
访问总数: 当日访问总数: 当前在线人数: