中纬度大气环流异常对2024年加州干旱引发山火的影响
The impact of mid-latitude atmospheric circulation anomalies on wildfires caused by California drought in summer 2024
通讯作者: 姚玉璧(1962—),男,研究员,主要从事气候变化对农业与生态的影响研究。E-mail:yaoyubi@163.com。
责任编辑: 黄小燕;校对;邓祖琴
收稿日期: 2025-08-13 修回日期: 2025-09-8
| 基金资助: |
|
Received: 2025-08-13 Revised: 2025-09-8
作者简介 About authors
杨耀先(1988—),男,甘肃武威人,博士,讲师,主要从事气候动力学与陆面过程研究。E-mail:yangyaox@lzre.edu.cn。
随着全球气候变暖,北半球夏季山林火灾事件频发,严重威胁生态环境。本文利用1980—2024年欧洲中期天气预报中心(European Center for Medium-Range Weather Forecasts,ECMWF)的ERA5逐日大气再分析资料与欧洲森林火灾信息系统(European Forest Fire Information System)的2024年夏季逐日火灾天气指数资料,基于天气尺度瞬变扰动的物理分解原理和大气长波活动诊断分析方法,对季节内和天气瞬变扰动两个时间尺度上的环流异常特点及影响2024年夏季美国加利福尼亚州(简称“加州”)山林火灾的机制进行了分析研究。结果表明:1)2024年7月上旬,北太平洋上空的准定常Rossby波能量向东传播,有助于北美大陆西岸异常高压反气旋的加强与维持,并通过绝热下沉增温,有利于山林火灾的爆发与蔓延。2)天气尺度瞬变扰动流场促使加州上空异常高压反气旋增强,进一步加强副热带高压,并提升山林火灾发生的风险。3)天气尺度瞬变扰动分解的结果表明,瞬变天气扰动场由于包含了天气尺度瞬变扰动过程中的纬向非对称性特征,其对区域性山林火灾发生的气象条件与风险指示意义明确,因此,天气尺度瞬变扰动场的分析可在山林火灾事件的预报预警中发挥作用。
关键词:
Summer wildfires in the Northern Hemisphere occur more and more frequently under global warming, posing a serious threat to the ecological environment. This study utilized ERA5 daily atmospheric reanalysis data spanning from 1980 to 2024 and daily fire weather index data from the European Forest Fire Information System, and analyzed the causes of wildfire events in California in summer 2024 from the perspective of anomalous circulation in mid-high latitudes both on transient and intraseasonal timescales through the physical decomposition principle of transient asymmetric anomaly and diagnosis of wave activity. The results are as follows: 1) In early July 2024, the energy of quasi-steady Rossby waves over the North Pacific propagated eastward, which strengthened and maintained the anomalous anticyclone off the west coast of the North American continent. The temperature increase caused by adiabatic downward motion favored the occurrence and spread of wildfires. 2) The transient asymmetric anomalous flows indicate that the anomalous anticyclone over California has strengthened the subtropical high and increased the risk of wildfires. 3) The decomposition results of transient asymmetric anomaly show that the transient asymmetric anomalous flows can indicate the meteorological conditions and risk of wildfires more clearly. Therefore, the prediction of transient asymmetric flows should play a key role in the forecast and early warning for extreme weather events.
Keywords:
本文引用格式
杨耀先, 姚玉璧, 阳仁贵, 高瑜昺, 张伟伟, 邓梦雨, 肖淼元.
YANG Yaoxian, YAO Yubi, YANG Rengui, GAO Yubin, ZHANG Weiwei, DENG Mengyu, XIAO Miaoyuan.
0 引言
在全球变暖背景下,干旱状况加剧,区域性高温干旱事件频发(Trenberth et al.,2015;林纾等,2022;李春华等,2024;颜鹏程等,2024;张强等,2025),全球易燃区域增加了29%,导致北半球暖季山林火灾事件频发,过火面积扩张(Senande-Rivera et al., 2022; Luo et al., 2024; Luo et al., 2025)。作为地球系统变化不可或缺的一部分,山林火灾不仅对社会经济、能源部门、人类健康、生态系统和生物多样性构成了严重威胁,而且还会通过释放温室气体和气溶胶以及改变区域下垫面类型和植被条件,从而对气候系统变化产生影响(Mack et al., 2011;Turetsky et al., 2015;Bowring et al., 2022)。例如,中高纬度地区的夏季山林火灾事件已成为全球火灾CO2排放的主要组成部分(Zheng et al., 2023)。已有研究表明,暖季山林火灾的发生受天气和气候因素复杂相互作用的驱动。在具备可燃植被的前提下,引发火灾的主要气象条件与风险因子包括地表温度升高、水汽压亏损增加、大气对流不稳定增强、闪电活动频发以及大风天气等(Sedano and Randerson, 2014; Pinto et al., 2020; Jain et al., 2022)。美国加利福尼亚州(简称“加州”)夏季常受副热带高压环流系统控制,主导下沉气流,炎热干燥,为山林火灾的发生提供了有利的气候背景(田永丽和王秋华,2019)。近年来,受气温变暖、降水减少及极端天气气候事件的影响,加州山林火灾频发,且蔓延速度快、过火面积大、破坏性强(田永丽和王秋华,2019;刘洋鹏等,2025),其中,2024年夏季,发生在当地时间6月15日的洛杉矶山林火灾(简称“6·15火灾”)过火面积达80 km2以上,一度导致公路关闭。此外,受高温天气影响,7月24日加州山林火灾,过火面积达1 616 km2(简称“7·24火灾”)。
高温与干旱等极端天气气候事件作为山林火灾发生的主要原因,研究分析其所对应的大气环流异常特征是评估分析山林火灾爆发与蔓延的气象条件与风险的必要环节。大气运动的根本原因是其对太阳辐射强迫的日、年、年际、年代际及更长时间尺度变化的响应。在空间上,又可以表示为行星尺度、天气尺度和中小尺度涡旋系统的叠加。当这些系统的强度和位置明显偏离气候平均状态时,极易引发极端天气事件,因此,对极端天气事件的预报分析本质上是对天气系统异常状态的识别与预报分析。钱维宏基于上述物理框架,提出了天气尺度瞬变扰动的物理分解法(钱维宏,2012)。该方法可将大气变量在时空域内物理分解成4个部分:前两项分别受季节演变的太阳辐射和海陆热力差异强迫,形成稳定的逐日气候态;第三项为年际和季节内尺度上,由热带热力强迫(如海温异常)或极地热力强迫(如极地放大增暖、海冰异常)引起的纬向平均瞬变扰动;第四项为较为复杂的天气尺度瞬变扰动项,受地形、热力强迫及大气内部变率的非线性过程影响。需要说明的是,对天气尺度瞬变扰动也可通过计算时间平均,分析其系统的稳定与持续性。目前,该方法在极端天气事件的预报分析中,已得到应用(钱维宏等,2012;钱维宏和张宗婕,2012)。此外,大气遥相关的多尺度变化也是引发极端天气气候事件的一个重要因子。有研究(Du and Lu, 2021; Du and Lu, 2022)指出,夏季北太平洋上空存在一支季节内遥远相关波列,并通过斜压能转换从气候平均的基本气流中获得扰动能量得以发展和维持,向东传播到北美大陆,因此,该波列可作为北美大陆极端天气气候事件预测的先导信号。
鉴于2024年夏季加州山林火灾的严重性及其发生、蔓延与大气环流异常关系的复杂性,针对此次山林火灾事件,并考虑多尺度大气环流异常是影响山林火灾发生、蔓延和持续的重要原因,本文利用天气尺度瞬变扰动分解法(钱维宏,2012),深入分析夏季季节内大气遥相关、天气尺度瞬变扰动影响2024年加州山林火灾的动力学机制,为山林火灾发生的气象条件与风险分析评估及防灾减灾业务工作提供参考依据。
1 资料与方法
1.1 资料来源
利用1980—2024年夏季欧洲中期天气预报中心(European Center for Medium-Range Weather Forecasts,ECMWF)第五代全球再分析资料(ERA5)的逐日数据(Hersbach et al., 2020),水平分辨率为0.25°×0.25°。所用变量包括不同等压面上的位势高度、纬向风、经向风、垂直速度,以及降水、地表气温和露点温度。此外,利用欧洲森林火灾信息系统(European Forest Fire Information System)的2024年夏季逐日火灾天气指数资料。目前,该指数已在全球山林火灾发生的气象条件与风险评估分析中得到广泛应用(Abatzoglou et al., 2019; Vitolo et al., 2019; Grillakis et al., 2022; Luo et al., 2024)。
1.2 方 法
式中:左端为第Y年第t日的位势高度Φ,单位:gpm;
式中:P为纬圈的总格点数。
为探究季节内尺度中纬度环流异常对加州山林火灾的影响,本文基于200 hPa天气尺度瞬变的经向风,利用大气长波指数(Wave Index,WI)公式,计算得到大气长波指数,具体公式如下(Du and Lu, 2021):
式中:
由于T-N波活动通量(Wave Activity Flux,WAF)与大气长波能量频散的方向一致,因此可以用来表征大气长波能量传播特征(Takaya and Nakamura,2001),其水平方向分量的数学表达式如下:
式中:p为标准化后的气压,即等压面对应的压强与标准大气压(1 000 hPa)之比;
式中:es、ea和VPD分别表示饱和水汽压、实际水汽压和水汽压差,单位均为hPa;T为地面气温,Td为地面空气露点温度,单位均为℃。
2 结果与分析
2.1 火灾天气指数的时空特征
由2024年夏季美国西部地区平均火灾天气指数空间分布(图1)看出,加州的山林火灾程度在北美大陆西海岸最强。本文选取25°N—40°N、120°W—110°W为加州山林火灾研究区域,基于火灾天气指数,分析2024年夏季加州山林火灾程度的时空演变规律。从加州火灾天气指数的时间-纬度和时间-经度剖面(图2)来看,6月中旬,在114°W—112°W和35°N附近,山林火灾程度较大,与“6·15”火灾实况相对应;7月上旬(7月1—11日),在116°W—114°W和35°N—37°N处,火灾天气指数有较好的持续性;7月下旬,在116°W—114°W和35°N以北,火灾天气指数较大,受灾程度较深,与“7·24”火灾实况对应。
图1
图1
2024年夏季美国西部平均火灾天气指数空间分布
(红色线框包围区域为研究区域)
Fig.1
Spatial distribution of the mean fire weather index in the western United State in summer of 2024
(the area surrounded by red wire frame is the research area)
图2
图2
2024年夏季美国加州火灾天气指数的时间-纬度(a)、时间-经度(b)剖面
Fig.2
The time-latitude (a) and time-longitude (b) sections of fire weather index in California, USA, in summer of 2024
图3
图3
2024年6月15日(a)、7月1—11日(b)、及7月24日(c)美国西部火灾天气指数空间分布
Fig.3
Spatial distribution of the mean fire weather index in the western United State on 15 June (a), from 1 to 11 July (b) and on 24 July (c) in 2024
2.2 山林火灾发生区域气象要素的时间演变
为分析山林火灾发生的气象条件与风险,图4为2024年夏季加州区域平均的逐日火灾天气指数、地面气温与水汽压亏损异常。首先,2024年夏季区域平均的气温与水汽压亏损基本呈现正异常,这种高温低湿的气象条件有利于山林火灾的爆发。进一步分析可知,“6·15”火灾期间(6月15—17日),火灾天气指数快速增长,且在17日达到峰值,为71.8,“7·24”火灾期间(7月24—27日),火灾天气指数也出现了快速增长,但数值相较于“6·15”火灾期间较小。气象要素分析结果表明,两次山林火灾发生前后,地面气温与水汽压亏损均处于正异常状态。需要指出的是,7月1—11日的火灾天气指数、地面气温与水汽压亏损异常基本维持在相对稳定的正位相区间,这进一步说明了该时段山林火灾发生具有持续性特征。此外,图5为夏季标准化降水指数的时空特征。可以看出,2024年夏季,加州大部地区干旱少雨[图5(a)],从区域平均的时间序列也可看出,2024年夏季为干旱年份[图5(b)]。上述结果为进一步研究大气环流异常对山林火灾发生的影响提供了一定的信息与线索。
图4
图4
2024年夏季加州区域平均的火灾天气指数、地面气温和水汽压亏损异常的时间序列
Fig.4
Time series of area mean fire weather index, surface air temperature (SAT) and VPD anomalies in California in summer of 2024
图5
图5
2024年夏季美国西部标准化降水指数空间分布(a)及1980—2024年夏季加州区域平均的标准化降水指数年际变化(b)
Fig.5
Spatial distribution of standardized precipitation index in the western United States in summer of 2024 (a) and inter-annual variations of the regional mean standardized precipitation index in California in summer from 1980 to 2024 (b)
2.3 大气环流异常特征
大气环流异常是导致地面气温及水汽压亏损异常的主要原因之一,上述两个气象要素是分析评估山林火灾发生的主要气象条件。夏季,加州受副热带高压环流系统控制,盛行下沉气流,气候炎热干旱(田永丽和王秋华,2019)。前文分析结果表明,2024年夏季,加州地面气温与水汽压亏损基本处于正异常,表现为高温低湿,因此,本节将基于大气环流异常特征分析,解释山林火灾过程中,地面气温与水汽压亏损异常的原因。
2.3.1 季节内大气环流异常特征
已有研究表明,夏季季节内尺度上,北太平洋上空的纬向波列通过斜压能转换,得以维持和发展,并向东传播,影响北美大陆的天气气候异常(Du and Lu, 2021; Du and Lu, 2022)。图6为2024年6月和7月逐日200 hPa瞬变扰动经向风沿45.75°N的时间-经度剖面以及2024年夏季大气长波指数逐日变化、1980—2024年7月1—11日大气长波指数年际变化。可以看出,2024年6月,大气波动以瞬变过程为主,未出现季节内尺度的定常信号[图6(a)、(c)]。2024年7月上旬,在170°W—160°W、150°W—140°W、120°W—110°W处,瞬变扰动经向风的位相基本不动,分别出现了持续的北风、南风和北风异常信号[图6(b)],结合大气长波指数的原始序列及其EEMD分解后的第三模态序列,发现EEMD分解后的序列呈现出显著的季节内变化特征[图6(c)],且与原始序列的相关系数为0.62,并通过置信水平为95%的显著性检验,且该时段大气波动处于稳定的负位相。此外,该时段平均大气波动指数的年际变化特征显示,2024年大气波动位于负位相最强处[图6(d)],进一步表明2024年7月上旬环流异常信号更为稳定,且扰动更为强烈。
图6
图6
2024年6月(a)与7月(b)逐日200 hPa瞬变扰动经向风沿45.75°N的时间-经度剖面(单位:m·s-1),2024年夏季大气长波指数逐日变化(c)及1980—2024年7月1—11日大气长波指数年际变化(d)
Fig.6
The daily time-longitude sections of transient asymmetric anomalous meridional wind at 200 hPa along 45.75°N in June (a) and July (b) of 2024 (Unit: m·s-1), daily variation of atmospheric long-wave index in summer 2024 (c), and inter-annual variation of atmospheric long-wave index from July 1 to 11 during 1980-2024 (d)
为进一步分析该时段的环流异常特征,图7为2024年7月1—11日平均的200 hPa位势高度扰动场及T-N波活动通量、500 hPa位势高度及水平风扰动场、500 hPa垂直速度异常场、地面气温与水汽压亏损异常场。可以看出,勘察加半岛以东洋面上空的异常高压以能量频散的方式向东传播,在中北太平洋、北美大陆西岸、北美大陆中东部分别形成异常低压、高压与低压[图7(a)]。此外,500 hPa位势高度与水平风的瞬变扰动平均场也呈现出准静止Rossby波[图7(b)],且异常高低压的位置与200 hPa的结果基本吻合,说明上述准静止波呈现出相当正压结构。2024年7月上旬的大气长波活动与5 860 gpm等值线所表现出的槽脊系统相对应[图7(b)],并使得北美大陆西岸上空的位势高度增强,而气候平均态下,北太平洋至北美大陆西岸大气波动较弱。进一步说明2024年7月上旬环流异常扰动强烈。
图7
图7
2024年7月1—11日平均的200 hPa位势高度扰动场(填色,单位:gpm)及T-N波活动通量(矢量箭头,单位:m2·s-2)(a)、500 hPa位势高度(填色,单位:gpm)及水平风(矢量箭头,单位:m·s-1)扰动场(b)、500 hPa垂直速度异常场(填色,单位:0.01 Pa·s-1)(c)及地面气温(绿色等值线,单位:K)与水汽压亏损(填色,单位: hPa)异常场(d)
(黄色实线和紫色实线分别为2024年7月1—11日和气候平均的该时段5 860 gpm位势高度等值线)
Fig.7
The averaged geopotential height perturbation field (the color shaded, Unit: gpm) and T-N wave activity fluxes (vectors, Unit: m2·s-2) at 200 hPa (a), geopotential height (the color shaded, Unit: gpm) and horizontal winds (vectors, Unit: m·s-1) perturbation field at 500 hPa (b), 500 hPa anomalous vertical velocity (the color shaded, Unit: 0.01 Pa·s-1) (c) and anomalous surface air temperature (green contour lines, Unit: K) and anomalous vapor pressure deficit field (the color shaded, Unit: hPa) (d) from 1 to 11 July 2024
(Yellow solid line and purple solid line represent 5 860 gpm feature line of geopotential height from1 to 11 July 2024 and climatology mean result, respectively)
2.3.2 天气尺度瞬变扰动的大气环流异常特征
前文分析表明,在“6·15”火灾和“7·24”火灾期间,地面气温与水汽压亏损为正异常。本节将以天气瞬变扰动分解为基础,分析两次山林火灾期间,大气环流异常对山林火灾气象条件的影响机制。
图8、图9分别为2024年6月14—16日(“6·15”火灾期间)、7月23—25日(“7·24”火灾期间)500 hPa等压面的位势高度场与水平风场的天气尺度瞬变扰动场、原始场以及气候平均与纬向平均扰动之和(原始场减去天气尺度瞬变扰动场)。可以看出,6月14日,加州上空被一异常低压气旋控制,至6月15日,随着位于加拿大西海岸的异常低压东移,根据绝对涡度守恒原理,其南侧应有异常高压反气旋的发展,此时,前一日加州上空的异常低压气旋被高压反气旋所取代,可维持到6月16日[图8(a)、(d)、(g)]。此外,原始流场[图8(b)、(e)、(h)]相较于天气尺度瞬变流场,因其包含了气候平均流场,因此,对环流演变的指示意义较弱。而气候平均与纬向平均扰动场之和对天气尺度瞬变环流演变的指示意义同样较弱,但加州上空受副热带高压环流系统控制[图8(c)、(f)、(i)]。该高压系统与瞬变扰动的异常高压叠加,进一步加强了加州上空的高压反气旋,增强的下沉气流通过绝热增温,导致该区域地面气温与水汽压亏损均呈正异常[图10(a)、(c)],其大值区与“6·15”火灾期间火灾天气指数的空间分布相对应[图3(a)]。
图8
图8
2024年6月14—16日500 hPa位势高度场(填色,单位:gpm)及水平风场(矢量箭头,单位:m·s-1)的天气尺度瞬变扰动场(a、d、g)、原始场(b、e、h)及气候平均与纬向平均扰动场之和(c、f、i)
Fig.8
The synoptic-scale transient asymmetric anomalous fields (a, d, g), original fields (b, e, h), and the sum of climatology mean and anomalous zonal mean fields (c, f, i) of geopotential height field (the color shaded, Unit: gpm) and horizontal winds field (vectors, Unit: m·s-1) at 500 hPa from 14 to 16 June 2024
图9
图9
2024年7月23—25日500 hPa位势高度场(填色,单位:gpm)及水平风场(矢量箭头,单位:m·s-1)的天气尺度瞬变扰动场(a、d、g)、原始场(b、e、h)及气候平均与纬向平均扰动场之和(c、f、i)
Fig.9
The synoptic-scale transient asymmetric anomalous fields (a, d, g), original fields (b, e, h), and the sum of climatology mean and anomalous zonal mean fields (c, f, i) of geopotential height field (the color shaded, Unit: gpm) and horizontal winds field (vectors, Unit: m·s-1) at 500 hPa from 23 to 25 June 2024
图10
图10
2024年6月15日(a、c)与7月24日(b、d)500 hPa垂直速度异常(填色,单位:0.01 Pa·s-1)(a、b)及地面气温(绿色等值线,单位:K)与水汽压亏损(填色,单位:hPa)(c、d)异常
Fig.10
The anomalous vertical velocity at 500 hPa (the color shaded, Unit: 0.01 Pa·s-1) (a, b), anomalous surface air temperature (the green contour lines, Unit: K) and anomalous vapor pressure deficit (the color shaded, Unit: hPa) (c, d) on 15 June (a, c) and 24 July (b, d) 2024
“7·24”火灾期间,500 hPa流场表现为非定常Rossby波东传的过程,具体而言,位于加拿大西海岸上空的瞬变扰动流场在东移过程中,北美大陆中西部上空的异常高压也逐步东移增强,但其中心位置相较于“6·15”火灾期间偏北[图9(a)、(d)、(g)]。同样,需要说明的是,原始流场[图9(b)、(e)、(h)]相较于天气尺度瞬变流场,高低压中心位置存在差异,且未能展现出非定常Rossby波东传的特征,因此,其对环流演变的指示意义仍较弱。而气候平均与纬向平均扰动场之和虽然对天气尺度瞬变环流演变的指示意义也不明确,但可以看出的是,相较于“6·15”火灾期间,加州上空的副热带高压环流系统出现了北移[图9(c)、(f)、(i)],加强了加州北部的高压反气旋,下沉气流增强,绝热增温,使该区域地面气温与水汽压亏损偏高[图10(b)、(d)],其大值区与“7·24”火灾期间的火灾天气指数的空间分布相吻合[图3(c)]。
图11为北半球中纬度大气环流异常影响美国加州山林火灾的概念图。可以看出,2024年夏季,在北美大陆少雨干旱的气候背景下,10 d左右的季节内大气遥相关波列与天气尺度瞬变Rossby波传播,形成了异常高压反气旋,增强了气候平均态的北美副热带高压,异常偏东风与偏北风抑制了东太平洋的暖湿气流,并通过下沉运动,绝热增温,出现高温低湿的气象条件,增强了山林火灾发生及蔓延的风险。需要区别的是,季节内尺度波列传播以纬向为主,而天气尺度瞬变波经向传播特征明显,环流形势转变迅速。以“6·15”火灾期间的环流演变为例,6月14日,加州半岛上空为气旋式低压异常,而6月15日,该处上空已被高压反气旋异常环流控制。对比分析田永丽和王秋华(2019)对秋季加州山林火灾发生的环流异常分析结果可以看出,北美副热带高压异常增强、偏北是影响加州山林火灾发生的主要因素,这与本文研究结果基本一致,但由于季节背景的差异,环流异常空间型差异显著,秋季主要以太平洋中东部至北美西部的“东高西低”位势高度距平场为主(田永丽和王秋华,2019),而夏季的大气波列传播是影响北美副热带高压偏强、偏北的主要原因。由于钱维宏(2012)发展的天气尺度瞬变扰动的物理分解方法中的天气尺度瞬变扰动项局地信号突出,且若该项能够在一定时间内得以维持,即可分析到准静止波特征。因此,本研究在影响山林火灾的异常高压反气旋形成及维持的机理分析方面,更进一步说明了环流异常信号的来源,给出了山林火灾气象风险发生的先导信号,为提高防灾减灾能力,提供了理论依据和应用价值。
图11
图11
中纬度大气环流异常影响美国加州山林火灾的概念图
Fig.11
Diagram of the impact of anomalous atmospheric circulation in mid-latitude on wildfire in California
3 结论与讨论
本文利用ERA5逐日大气再分析资料与逐日火灾天气指数资料,基于天气尺度瞬变扰动的物理分解原理和大气长波活动诊断分析方法,对季节内和天气尺度瞬变扰动两个时间尺度上的环流异常特点及影响2024年夏季美国加州山林火灾爆发与蔓延的机制进行了动力学与热力学的综合分析研究,得到以下主要结论。
1)2024年7月上旬,在北美大陆西岸干旱少雨的背景下,北太平洋上空的准定常Rossby波能量的向东传播在北美大陆西岸形成稳定且振幅较大的异常高压反气旋,并通过绝热下沉增温,使得地面气温和饱和水汽压与实际水汽压差增强,上述高温低湿的气象条件有利于山林火灾的爆发与蔓延。
2)天气尺度上,瞬变扰动流场揭示了中高纬度Rossby波传播过程,该过程导致加州上空出现异常高压反气旋,并通过增强绝热下沉增温,使得地表出现暖干异常,加剧了山林火灾发生的风险。
3)天气尺度瞬变扰动分解的结果表明,天气尺度瞬变扰动场由于包含了该过程中的纬向非对称性特征,其对区域性山林火灾发生的气象条件与风险指示意义明确,因此,天气尺度瞬变扰动场的分析在山林火灾事件的气象条件预报预警工作中应予以重视。
本文主要针对2024年美国加州山林火灾事件,基于天气尺度瞬变扰动分解,开展了关于山林火灾气象风险的大气动力学与热力学过程的机制研究。需要指出的是,本研究局限于个例分析,而未在气候尺度上统计分析北美大陆乃至北半球中高纬度地区的山林火灾及其气象条件的时空特征与环流异常。在未来的研究中,北半球中高纬度地区山林火灾强度与频数的演变规律与大气环流异常的联系及相应的动力学机制仍需要深入探讨。此外,中小尺度过程局地气象要素变化对山林火灾发生及蔓延的物理机制,也应结合站点观测数据、高分辨率遥感资料和数值模式,进一步开展研究。
参考文献
我国干旱半干旱区近60 a气象干旱气候特征分析
[J].为研究我国干旱半干旱区连续无雨日气候特征的变化趋势,利用该区域74个气象站1961—2022年逐日降水观测资料,对研究区连续无雨日变化特征及其在1961—1990年和1991—2020年前后两个时段的差异等进行分析,重点关注16 d及以上连续无雨日,并将16~25 d、26~40 d、41~60 d、60 d以上连续无雨日分别定义为轻旱、中旱、重旱和特旱。结果表明:我国干旱半干旱气候区16 d及以上连续无雨日的发生次数和日数存在明显差异,尤其是重旱、特旱对应的连续无雨日发生次数和日数,干旱区分别是半干旱区的2.0倍与6.0倍左右;1991—2020年与1961—1990年相比,研究区西部不同等级气象干旱发生次数明显减少,而中东部有所增加;研究区西部不同等级干旱发生日数同样减少明显,中部轻旱和中旱发生日数减少,而重旱和特旱发生日数有所增加;研究时段内,该区域绝大部分气象站点不同等级干旱发生次数和日数均未发生突变。
2022年夏季我国高温干旱特征及其环流形势分析
[J].在气候变暖背景下,2022年夏季我国出现1961年以来平均气温最高和降水量次少的气候异常,并伴有最强的全国性(东北地区除外)高温过程和长江中下游及川渝地区大范围强伏旱。针对这次高温干旱的持续性和极端性,本文基于2022年6—8月全国2162个气象站逐日最高气温和降水量以及NCEP(National Centers for Environmental Prediction)/NCAR(National Center for Atmospheric Research)逐日再分析资料等,分析其时空分布特征及环流形势,将对今后我国南方地区夏季高温干旱不同时间尺度的预报预测有一定参考价值。结果表明:2022年夏季,全国76.0%的站共出现48 198次高温,其中36.6%的站累计出现3001次极端高温事件,20次以上极端高温事件的站点均分布在四川盆地,高温状况远超21世纪以来的典型高温年份。全国性的高温过程从6月13日持续到8月30日,共计79 d,高温最强时段在8月11—24日。按照高温发生站次、持续时间、影响范围、强度等由强到弱综合排序,依次是华东、西南、华中、西北、华北和华南地区,其中西南地区极端性最强,而东北地区未出现高温。干旱时空分布特征与高温基本相似,全国最强干旱时段在8月中旬。2022年夏季,500 hPa欧亚中高纬度呈“两脊一槽”型,尤其在7—8月乌拉尔山和鄂霍次克海附近高压脊形成阶段性阻塞高压,强盛的副热带系统将两高之间活跃的冷空气大部分时段阻挡在50°N以北,造成我国“北涝南旱”的格局;低纬度的伊朗高压异常东伸,西太平洋副热带高压略偏北且异常西伸,两高压长时间贯通形成的高压带控制区气流辐散下沉,并持续阻碍水汽向中纬度输送,不利于长江流域产生降水。同时,对流层高层南亚高压异常偏东,与中层的西太平洋副热带高压相向而行,于8月中下旬在80°E—120°E范围内叠加,致使控制我国大范围的高压系统呈稳定正压结构,中心位于川渝上空,致使川渝地区成为高温日数和极端高温事件次数的高值中心。
2024年4—6月我国区域性高温干旱特征及其影响因子
[J].在全球气候变暖的严峻形势下,区域性高温干旱事件愈发频繁,对生态环境、粮食安全、经济发展和生命健康构成重大威胁。2024年4—6月,我国华北、西北及西南地区再度遭遇高温干旱侵袭,农业生产遭受明显损失。本研究综合多种数据资料剖析上述3个区域高温干旱事件的演变特征及成因。结果表明,西南地区干旱主要发生在4月,而华北和西北地区自4月起旱情显现、5—6月旱情逐渐加剧(强度增强、范围扩大)。伴随旱情加剧,区域最高气温异常范围明显扩展,西北地区高温日数创历史新高,5月最高气温达到峰值,较旱情最为严重的6月提前一个月;西南和华北地区高温接近历史极值。进一步分析表明,华北地区干旱主要受太平洋地区环流调控,而高温则主要受低纬度太平洋环流及西太平洋暖池影响;西北地区的干旱主要与西太平洋副热带高压及北半球极涡密切相关,高温则主要来自北大西洋的影响;西南地区高温干旱的成因更为复杂,但主要聚焦于北半球副热带高压和低纬度太平洋、印度洋。从大气环流和水汽输送的角度审视,华北和西北旱情的主导因素为大陆高压的发展和维持,而西南地区的干旱则受偏北的西太平洋副热带高压引导,致使来自印度大陆的干热气流控制这一区域,造成水汽辐散,进而引发高温干旱灾害。
Global emergence of anthropogenic climate change in fire weather indices
[J].Changes in global fire activity are influenced by a multitude of factors including land-cover change, policies, and climatic conditions. This study uses 17 climate models to evaluate when changes in fire weather, as realized through the Fire Weather Index, emerge from the expected range of internal variability due to anthropogenic climate change using the time of emergence framework. Anthropogenic increases in extreme Fire Weather Index days emerge for 22% of burnable land area globally by 2019, including much of the Mediterranean and the Amazon. By the midtwenty-first century, emergence among the different Fire Weather Index metrics occurs for 33-62% of burnable lands. Emergence of heightened fire weather becomes more widespread as a function of global temperature change. At 2 degrees C above preindustrial levels, the area of emergence is half that for 3 degrees C. These results highlight increases in fire weather conditions with human-caused climate change and incentivize local adaptation efforts to limit detrimental fire impacts. Plain Language Summary Observed increases in the frequency and severity of fire weather have been observed across portions of the globe over the past half century. We used climate models to identify where and when anthropogenic climate change causes fire weather conditions to exceed that of natural variability. Modeling results show that emergence for some fire weather indices is already under way for a sizable portion of the globe, including much of southern Europe and the Amazon, and with an expansion of this area with continued warming over the twenty-first century. These findings suggest substantial increases in fire potential in regions where vegetation abundance and ignitions are not limiting, highlighting the urgency to adapt to changes in fire disturbances and hazards.
Pyrogenic carbon decomposition critical to resolving fire’s role in the Earth system
[J].
Multi-decadal change in western US nighttime vapor pressure deficit
[J].
Wave trains of 10-30-day meridional wind variations over the North Pacific during summer
[J].
Distinct intensity of 10-30-day intraseasonal waves over the North Pacific between early and late summers
[J].
Climate drivers of global wildfire burned area
[J].Wildfire is an integral part of the Earth system, but at the same time it can pose serious threats to human society and to certain types of terrestrial ecosystems. Meteorological conditions are a key driver of wildfire activity and extent, which led to the emergence of the use of fire danger indices that depend solely on weather conditions. The Canadian Fire Weather Index (FWI) is a widely used fire danger index of this kind. Here, we evaluate how well the FWI, its components, and the climate variables from which it is derived, correlate with observation-based burned area (BA) for a variety of world regions. We use a novel technique, according to which monthly BA are grouped by size for each Global Fire Emissions Database (GFED) pyrographic region. We find strong correlations of BA anomalies with the FWI anomalies, as well as with the underlying deviations from their climatologies for the four climate variables from which FWI is estimated, namely, temperature, relative humidity, precipitation, and wind. We quantify the relative sensitivity of the observed BA to each of the four climate variables, finding that this relationship strongly depends on the pyrographic region and land type. Our results indicate that the BA anomalies strongly correlate with FWI anomalies at a GFED region scale, compared to the strength of the correlation with individual climate variables. Additionally, among the individual climate variables that comprise the FWI, relative humidity and temperature are the most influential factors that affect the observed BA. Our results support the use of the composite fire danger index FWI, as well as its sub-indices, the Build-Up Index (BUI) and the Initial Spread Index (ISI), comparing to single climate variables, since they are found to correlate better with the observed forest or non-forest BA, for the most regions across the globe.
The ERA5 global reanalysis
[J].
Observed increases in extreme fire weather driven by atmospheric humidity and temperature
[J].
Evolution of land surface air temperature trend
[J].
Rapid summer Russian Arctic sea-ice loss enhances the risk of recent Eastern Siberian wildfires
[J].In recent decades boreal wildfires have occurred frequently over eastern Siberia, leading to increased emissions of carbon dioxide and pollutants. However, it is unclear what factors have contributed to recent increases in these wildfires. Here, using the data we show that background eastern Siberian Arctic warming (BAW) related to summer Russian Arctic sea-ice decline accounts for ~79% of the increase in summer vapor pressure deficit (VPD) that controls wildfires over eastern Siberia over 2004-2021 with the remaining ~21% related to internal atmospheric variability associated with changes in Siberian blocking events. We further demonstrate that Siberian blocking events are occurring at higher latitudes, are more persistent and have larger zonal scales and slower decay due to smaller meridional potential vorticity gradients caused by stronger BAW under lower sea-ice. These changes lead to more persistent, widespread and intense high-latitude warming and VPD, thus contributing to recent increases in eastern Siberian high-latitude wildfires.© 2024. The Author(s).
Atmospheric and oceanic drivers behind the 2023 Canadian wildfires
[J].
Carbon loss from an unprecedented Arctic tundra wildfire
[J].
Enhancing the fire weather index with atmospheric instability information
[J].The Fire Weather Index (FWI) is widely used to assess the meteorological fire danger in several ecosystems worldwide. One shortcoming of the FWI is that only surface weather conditions are considered, despite the important role often played by atmospheric instability in the development of very large wildfires. In this work, we focus on the Iberian Peninsula for the period spanning 2004–2018. We show that atmospheric instability, assessed by the Continuous Haines Index (CHI), can be used to improve estimates of the probability of exceedance of energy released by fires. To achieve this, we consider a Generalized Pareto (GP) model and we show that by stepwisely introducing the FWI and then the CHI as covariates of the GP parameters, the model is improved at each stage. A comprehensive comparison of results using the GP with the FWI as a covariate and the GP with both the FWI and CHI as covariates allowed us to then define a correction to the FWI, dependent on the CHI, that we coined enhanced FWI (FWIe). Besides ensuring a better performance of this improved FWI version, it is important to stress that the proposed FWIe incorporates efficiently the effect of atmospheric instability into an estimation of fire weather danger and can be easily incorporated into existing systems.
Multi-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystems
[J].. Climate-driven changes in the fire regime within boreal forest ecosystems are likely to have important effects on carbon cycling and species composition. In the context of improving fire management options and developing more realistic scenarios of future change, it is important to understand how meteorology regulates different aspects of fire dynamics, including ignition, daily fire spread, and cumulative annual burned area. Here we combined Moderate-Resolution Imaging Spectroradiometer (MODIS) active fires (MCD14ML), MODIS imagery (MOD13A1) and ancillary historic fire perimeter information to produce a data set of daily fire spread maps for Alaska during 2002–2011. This approach provided a spatial and temporally continuous representation of fire progression and a precise identification of ignition and extinction locations and dates for each wildfire. The fire-spread maps were analyzed with daily vapor pressure deficit (VPD) observations from the North American Regional Reanalysis (NARR) and lightning strikes from the Alaska Lightning Detection Network (ALDN). We found a significant relationship between daily VPD and likelihood that a lightning strike would develop into a fire ignition. In the first week after ignition, above average VPD increased the probability that fires would grow to large or very large sizes. Strong relationships also were identified between VPD and burned area at several levels of temporal and spatial aggregation. As a consequence of regional coherence in meteorology, ignition, daily fire spread, and fire extinction events were often synchronized across different fires in interior Alaska. At a regional scale, the sum of positive VPD anomalies during the fire season was positively correlated with annual burned area during the NARR era (1979–2011; R2 = 0.45). Some of the largest fires we mapped had slow initial growth, indicating opportunities may exist for suppression efforts to adaptively manage these forests for climate change. The results of our spatiotemporal analysis provide new information about temporal and spatial dynamics of wildfires and have implications for modeling the terrestrial carbon cycle.\n
Spatial and temporal expansion of global wildland fire activity in response to climate change
[J].Global warming is expected to alter wildfire potential and fire season severity, but the magnitude and location of change is still unclear. Here, we show that climate largely determines present fire-prone regions and their fire season. We categorize these regions according to the climatic characteristics of their fire season into four classes, within general Boreal, Temperate, Tropical and Arid climate zones. Based on climate model projections, we assess the modification of the fire-prone regions in extent and fire season length at the end of the 21st century. We find that due to global warming, the global area with frequent fire-prone conditions would increase by 29%, mostly in Boreal (+111%) and Temperate (+25%) zones, where there may also be a significant lengthening of the potential fire season. Our estimates of the global expansion of fire-prone areas highlight the large but uneven impact of a warming climate on Earth’s environment.
A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow
[J].
Attribution of climate extreme events
[J].
Global vulnerability of peatlands to fire and carbon loss
[J].
A 1980-2018 global fire danger re-analysis dataset for the Canadian Fire Weather Indices
[J].This data descriptor documents a dataset containing over 38 years of global reanalysis of wildfire danger. It consists of seven fields to assess fuel moisture as well as fire behavior. The methodology employed to generate these data is based on the Canadian Forest Fire Weather Danger Rating and utilizes weather forcing from ERA-Interim, a global reanalysis dataset produced by the European Centre for Medium-range Weather Forecasts. Global fire danger reanalysis data are used to quantify the climatological expectation of fire danger at a certain time of the year and for any location on the globe. It can be regarded as a complementary product to the fire danger forecasts issued daily by the Global Wildfire Information System (GWIS) under the umbrella of the European Copernicus program.
Ensemble empirical mode decomposition:A noise-assisted data analysis method
[J].A new Ensemble Empirical Mode Decomposition (EEMD) is presented. This new approach consists of sifting an ensemble of white noise-added signal (data) and treats the mean as the final true result. Finite, not infinitesimal, amplitude white noise is necessary to force the ensemble to exhaust all possible solutions in the sifting process, thus making the different scale signals to collate in the proper intrinsic mode functions (IMF) dictated by the dyadic filter banks. As EEMD is a time–space analysis method, the added white noise is averaged out with sufficient number of trials; the only persistent part that survives the averaging process is the component of the signal (original data), which is then treated as the true and more physical meaningful answer. The effect of the added white noise is to provide a uniform reference frame in the time–frequency space; therefore, the added noise collates the portion of the signal of comparable scale in one IMF. With this ensemble mean, one can separate scales naturally without any a priori subjective criterion selection as in the intermittence test for the original EMD algorithm. This new approach utilizes the full advantage of the statistical characteristics of white noise to perturb the signal in its true solution neighborhood, and to cancel itself out after serving its purpose; therefore, it represents a substantial improvement over the original EMD and is a truly noise-assisted data analysis (NADA) method.
Record-high CO2 emissions from boreal fires in 2021
[J].Extreme wildfires are becoming more common and increasingly affecting Earth’s climate. Wildfires in boreal forests have attracted much less attention than those in tropical forests, although boreal forests are one of the most extensive biomes on Earth and are experiencing the fastest warming. We used a satellite-based atmospheric inversion system to monitor fire emissions in boreal forests. Wildfires are rapidly expanding into boreal forests with emerging warmer and drier fire seasons. Boreal fires, typically accounting for 10% of global fire carbon dioxide emissions, contributed 23% (0.48 billion metric tons of carbon) in 2021, by far the highest fraction since 2000. 2021 was an abnormal year because North American and Eurasian boreal forests synchronously experienced their greatest water deficit. Increasing numbers of extreme boreal fires and stronger climate–fire feedbacks challenge climate mitigation efforts.
/
| 〈 |
|
〉 |
