• CN 62-1175/P
  • ISSN 1006-7639
  • 双月刊
  • 中国科技核心期刊
  • 中国学术期刊综合评价数据库统计源期刊
  • 中文科技期刊数据库收录期刊

干旱气象, 2023, 41(2): 187-206 DOI: 10.11755/j.issn.1006-7639(2023)-02-0187

干旱与粮食安全

干旱灾害对粮食安全的影响及其应对技术研究进展与展望

赵鸿,1,2, 蔡迪花1,2, 王鹤龄1,2, 杨阳1,2, 王润元,1,2, 张凯1,2, 齐月1,2, 赵福年1,2, 陈斐1,2, 岳平1,2, 王兴3, 姚玉璧4, 雷俊5, 魏星星1,2

1.中国气象局兰州干旱气象研究所,中国气象局干旱气候变化与减灾重点实验室,甘肃省干旱气候变化与减灾重点实验室,甘肃 兰州 730020

2.中国气象局定西干旱气象与生态环境野外试验基地,甘肃 定西 743000

3.兰州区域气候中心,甘肃 兰州 730020

4.兰州资源环境职业技术大学,甘肃省气候资源利用与防灾减灾重点实验室,甘肃 兰州 730021

5.甘肃省定西市气象局,甘肃 定西 743000

Progress and prospect on impact of drought disaster on food security and its countermeasures

ZHAO Hong,1,2, CAI Dihua1,2, WANG Heling1,2, YANG Yang1,2, WANG Runyuan,1,2, ZHANG Kai1,2, QI Yue1,2, ZHAO Funian1,2, CHEN Fei1,2, YUE Ping1,2, WANG Xing3, YAO Yubi4, LEI Jun5, WEI Xingxing1,2

1. Institute of Arid Meteorology, China Meteorological Administration, Key Open Laboratory of Arid Change and Disaster Reduction of CMA, Key Laboratory of Arid Climatic Change and Reducing Disaster of Gansu Province, Lanzhou 730020, China

2. Dingxi Arid Meteorology and Ecological Environment Field Experimental Station, CMA, Dingxi 743000, Gansu, China

3. Lanzhou Regional Climate Center, Lanzhou 730020, China

4. Lanzhou Resources&Environment Voc-Tech University, Key Laboratory of Climate Resources Utilization and Disaster Prevention and Mitigation of Gansu Province, Lanzhou 730021, China

5. Dingxi Meteorological Bureau of Gansu Province, Dingxi 743000, Gansu, China

通讯作者: 王润元(1965—),男,甘肃西和人,研究员,主要从事干旱气候变化影响适应与干旱监测研究。E-mail:wryww@163.com

责任编辑: 蔡迪花;校对:黄小燕

收稿日期: 2023-01-10   修回日期: 2023-02-28  

基金资助: 国家自然基金项目(41975151)
国家自然基金项目(42175192)
甘肃省自然科学基金项目(20JR5RA117)
甘肃省自然科学基金项目(21JR7RA772)
甘肃省自然科学基金项目(096RJZA129)
甘肃省基础研究创新群体项目(20JR5RA121)

Received: 2023-01-10   Revised: 2023-02-28  

作者简介 About authors

赵鸿(1977—),女,甘肃临洮人,研究员,主要从事干旱气候变化影响适应与干旱监测研究。E-mail:zhaohonglt@126.com

摘要

干旱是当今世界出现频率最高、持续时间最长、危害范围最广的重大气象灾害,对全球农业、生态、社会发展和国民经济等影响巨大而广泛。农业旱灾是影响农业生产的重要因素,农业生产关乎着国家粮食安全。我国是一个农业大国,同时也是一个旱灾频发的国家,深入了解农业干旱灾害的成因、影响特征、旱灾强度、严重程度以及作物致灾的生理过程和机理等是提升农业干旱灾害监测预测预警水平、减轻和防御灾害损失、提高国家粮食安全生产需要解决的重要科学问题。本文综合回顾了国内外不同程度的农业干旱及其对粮食生产影响的最新研究进展,从农作物形态、生理、细胞和分子水平等方面探究了干旱影响特征及机制,围绕粮食生产如何有效应对农业干旱问题,评述了当前农业干旱监测的主要指标、方法、预警系统等,针对农业可持续发展和干旱新特征,讨论了当前防旱减灾和农业干旱应对的现状,强调了适应与减缓并举的一系列干旱应对措施,在此基础上结合国家、区域和行业发展需求提出了今后应着重加强的重要科学问题、研究对策及学科发展展望。

关键词: 干旱灾害; 粮食安全; 农业生产; 影响机制; 干旱监测; 干旱适应与减缓; 对策建议

Abstract

Drought is a major meteorological disaster with the highest frequency, the longest duration and the widest scope of harm in the world today, which has a huge and extensive impact on agriculture, ecology, social development and national economy all over the world. The drought is an important factor affecting agricultural production which determines the stability of crop production, further relates to the national food security. China is a large agricultural country, and also is a country with frequent drought disaster. Therefore, to improve the monitoring, forecasting and warning level of agricultural drought disaster, it is necessary to deeply understand its formation, influence characteristics, drought intensity, severity and physiological process and mechanism of crop victimization. It is also an important scientific problem to reduce and prevent drought disaster losses and improve national food security production. This paper comprehensively reviews the recent internal and overseas research progress of agricultural drought with different degrees and its impact on crop production, and explores the influence characteristics and mechanism of drought from the aspects of crop morphology, physiology, cellular and molecular levels, etc. The main indicators, indexes, methods and early warning systems in current agricultural drought monitoring are reviewed around food production to cope effectively agriculture drought. According to the new characteristics of agricultural sustainable development and drought, the current situation of drought disaster prevention and mitigation and agricultural drought coping are discussed. A series of drought coping measures both adaptation and mitigation are emphasized. On this basis, combining with the needs of national, regional and industrial development, the paper puts forward the important scientific problems, research countermeasures and the prospect of discipline development which should be emphasized in the future.

Keywords: drought disaster; food security; agricultural production; impact mechanism; drought monitoring; drought adaptation and mitigation; countermeasures and suggestions

PDF (17497KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

赵鸿, 蔡迪花, 王鹤龄, 杨阳, 王润元, 张凯, 齐月, 赵福年, 陈斐, 岳平, 王兴, 姚玉璧, 雷俊, 魏星星. 干旱灾害对粮食安全的影响及其应对技术研究进展与展望[J]. 干旱气象, 2023, 41(2): 187-206 DOI:10.11755/j.issn.1006-7639(2023)-02-0187

ZHAO Hong, CAI Dihua, WANG Heling, YANG Yang, WANG Runyuan, ZHANG Kai, QI Yue, ZHAO Funian, CHEN Fei, YUE Ping, WANG Xing, YAO Yubi, LEI Jun, WEI Xingxing. Progress and prospect on impact of drought disaster on food security and its countermeasures[J]. Arid Meteorology, 2023, 41(2): 187-206 DOI:10.11755/j.issn.1006-7639(2023)-02-0187

引言

干旱灾害(简称“旱灾”),是指一段时间内降水量比常年明显偏少,造成某一地区经济社会活动(尤其是农业生产)和人类生活遭受较大危害的现象,普遍存在于世界各地,频繁发生于不同时期(Wilhite,2000;Li et al.,2015)。旱灾是气象干旱、农业干旱、水文干旱、社会经济干旱和生态干旱之间的一种链状传递和转化过程,一个完整的干旱事件包括干旱历时、严重程度和平均强度(姚玉璧等,2013;张强等,2014;Heffernan,2013)。全球每年因干旱导致的经济损失达60~80亿美元,2021年甚至高达121亿美元(American Meteorological Society, 1997;应急管理部-教育部减灾与应急管理研究院等,2022),远高于其他气象灾害造成的损失(张强等,2014;Wilhite,2000),受到高度关注(王春乙,2007;吕娟等,2011;Turner et al., 2011;Gupta et al.,2020)。

受全球气候变化和经济快速发展的影响,全球干旱呈现多发、加重趋势,中亚地区65%的区域表现为干旱程度加剧、强度持续增强,2022年全球极端干旱问题尤为突出(李稚等,2022;张强,2022;Metz et al.,2007;Li et al.,2015;IPCC,2022)。随着全球气候变暖,水循环加快,陆地蒸散发和储水量减少,干旱半干旱区不断扩张,干旱持续加剧,干旱风险进一步加大,且存在较大的区域差异(张强等,2017;Salinger et al.,2005;Cook et al.,2007;Metz et al.,2007;Huang et al.,2016)。联合国《2022年全球干旱数字》报告指出,自2000年以来全球干旱次数增加了29%,全球处于高温和干旱管理的“十字路口”(UNCCD, 2022)。预计到2100年,极端干旱地区的干旱次数和强度将增加1%~30%(IPCC,2007)。

农业干旱是农作物生长发育过程中,因降雨不足或长期无雨造成大气干旱、土壤缺水,致使作物得不到适时适量的水分补给,无法满足正常需水,影响其光合过程及生物量积累,最终造成农作物减产甚至绝收。农业干旱是影响农业生产的重要因素,也是农业生产面临的最大风险之一(王春乙,2007;肖国举和李裕,2012;张强等,2017;Mirzabaev et al.,2023)。农业生产决定着粮食产量的稳定,是国家战略性、基础性核心产业,农作物种植是农业的“芯片”,是促进农业长期稳定发展,保障国家粮食安全的根本。干旱缺水直接影响农作物的生长发育和产量形成,造成粮食产量下降、品质降低,从而增加粮食生产供给的不稳定性和风险,直接威胁粮食安全,成为制约社会经济发展的重要因素之一(姚玉璧等,2013;张强等,2008;张强等,2020;IPCC,2007;IPCC,2022;Mirzabaev et al.,2023),长期以来农业旱灾对粮食安全的影响是学者和政府部门关注的重点和焦点。农业干旱对作物的影响从微观到宏观表现在细胞、生理和形态等不同层次水平上,其影响程度取决于干旱开始时间、发展和持续时间、严重程度及农作物种类和品种、所处生育期等因素(赵鸿等,2016;Ulrich et al.,2019;Gupta et al.,2020)。

我国是一个农业大国,也是旱灾频发的国家,旱灾影响范围广、历时长、危害重。据统计,我国每年因干旱受灾的农田面积多达2 600万hm2,粮食减产高达50%~75%(姚玉璧等,2013;张强等,2014)。近年来,受气候变化和水资源短缺的影响,我国农作物受旱、成灾和绝收面积不断扩大,在北方干旱形势依然严峻的情况下南方干旱出现明显增加和加重趋势,新旱区逐渐扩展,局部性、区域性干旱灾害频频出现,损失巨大(张强等,2014;康蕾和张红旗,2014;倪深海等,2022;张强,2022),严重威胁着国家的粮食安全和生态安全(王春乙,2007;张强等,2012a;张强等,2012b;肖国举和李裕,2012;康蕾和张红旗,2014;周广胜等,2016;Fu et al.,2013),已成为制约社会经济可持续发展的最主要因素,给我国农业生产和抗旱减灾工作带来前所未有的挑战和困难(吕娟等,2011;张强等,2014;Huang et al.,2016)。

就干旱缺水对农业影响、干旱监测及抗旱减灾方面已进行了大量研究,从不同方面剖析了干旱胁迫后作物根、茎、叶、花、籽粒等一系列响应特征和水分传输、生理生化过程以及形态响应等(白莉萍等,2004;覃志豪等,2005;毕建杰等,2008;张强等,2015;赵鸿等,2016;McWilliam,1986;Araus et al.,2002;Chaves et al.,2003;Boyer and Westgate,2004;Zhu et al.,2005;Rampino et al.,2006;Battaglia et al.,2007;Akram,2011;Hossain et al.,2012;Boguszewska-Mankowska et al.,2018;Ulrich et al.,2019;Gupta et al.,2020),相继研发了一系列农业干旱监测指标和方法(孙荣强,1994;王春乙,2007;姚玉璧等,2013;李柏贞和周广胜,2014;刘宗元等,2014;国家气象中心等,2015;王润元等,2015;Palmer,1968;Hollinger et al.,1993;Jefferies,1993;Medrano et al.,2002;Dai et al.,2004;Zakaluk and Ranjan,2006;Zhang et al.,2009;Ricardo,2012;Ramirez et al.,2016),并从农业、水利、生物等角度制定了多种适应和减缓措施(陆亚龙和肖功建,2001;韩萍,2002;覃志豪等,2005;邓振镛等,2007;山仑,2011;肖国举和李裕,2012;熊友才和李凤民,2014;张强等,2008;张强等,2012a;张强等,2012b;周广胜等,2016;赵鸿等,2016;张强等,2017;赵鸿等,2018;Fu et al.,2013;WMO & GWP,2014;Zhao et al.,2014;WMO & GWP,2017;Qiang et al.,2019a;Gupta et al.,2020;Hervás-Gámez and Delgado-Ramos,2020)。已有的大多数研究结果各有侧重,比较分散,在农业旱灾成因-影响程度-作物响应机制-监测-应对这一主线的系统性梳理和凝练方面仍需要进一步加强。鉴于农业干旱灾害的复杂性,本文在上述论述基础上,集合了农业、水利、生物、气象等各方面的研究成果,强化农业干旱灾害监测预报能力,以期为提升国家粮食安全气象服务的精细化水平提供一定的理论基础。

农业干旱灾害的发展主要由不可抗拒的自然因素决定,可通过致灾机理研究深入认识灾害发生发展规律、持续时间、演变特征、致灾过程,探析干旱缺水时农作物受害的生理机理、信号传导和感知途径,研发农业干旱监测指标和方法,加强旱灾监测评估和预测预警,以便采取相应的防灾减灾措施减轻和防御农业旱灾造成的损失,提高粮食产量,缓解农业减产带来的粮食安全风险,这是目前急需解决的重要科学问题。鉴于此,本文在概述全球重大干旱的基础上,综合回顾了历年来国内外干旱对粮食生产的影响特征、影响机理和应对方面的最新研究进展,主要围绕农业干旱灾害形成的生理机制、干旱监测以及对干旱适应减缓方面进行综述,讨论当前防旱减灾和干旱应对的现状,结合国家、区域和行业需求提出今后应着重加强研究的关键科学问题,探讨研究对策并进行学科发展展望。

1 干旱对粮食安全的影响回顾

1.1 国际重大农业干旱对粮食生产的影响

1.1.1 全球旱灾频发,加之人口增加和水资源短缺,粮食供需矛盾增加

联合国《2022年干旱数字》报告指出,干旱对世界农业生产产生了深远、广泛且低估了的影响,尤其对粮食安全的影响(Gupta et al.,2020;Mirzabaev et al.,2023)。干旱引起的水分短缺会对农作物造成一定危害,导致作物产量降低、品质下降,甚至绝收。IPCC第六次评估报告(IPCC,2022)指出,21世纪气候变化对粮食产量的影响仍以负面为主,变幅随不同作物、时间、地区变化差异较大。气候变化使玉米、大豆、水稻、小麦产量每10 a分别减少2.3%、3.3%、0.7%、1.3%,据统计,每年因干旱造成的粮食减产超过其他因素造成的总和,在过去10 a中全球因干旱造成的作物产量损失约300亿美元(FAO,2018)。图1展示了全球人口、可耕地面积、农业淡水需求量的过去、现在和未来(Gupta et al.,2020)。可以看出,全球人口从1990年的50亿增加到目前的75亿多,预计到2050年将增加到97~100亿[图1(a)],同时全球粮食需求量也将加速增长,从如今的约21亿t增长到2050年的30亿t左右,届时预计有50亿人生活在缺水地区(FAO,2006;Gupta et al.,2020);尽管全球可耕地面积略有增加[图1(b)],考虑到目前每公顷作物产量的比率,预计需要额外增加100万hm2可耕土地才能确保粮食安全(Gupta et al.,2020);考虑到目前气候变化趋势,预计到2050年农业用水需求量可能增加1倍[图1(c)],淡水供应量将下降50%(Gleick,2000;Koncagül et al.,2020;Gupta et al.,2020)。

图1

图1   全球人口(a)、可耕地面积(b)和农业淡水需求量(c)的过去、现在和未来(Gupta et al.,2020

Fig.1   Past, present, and future of world population (a), arable land (b) and freshwater demand in agriculture (c)(Gupta et al., 2020


1.1.2 旱灾频发造成农作物产量下降、粮食价格上涨,粮食安全风险增大

2022年气候异常,北半球遭遇了大范围、史无前例的严重干旱,北美洲、欧洲、地中海地区、东北非地区以及中国南方地区都出现破纪录的极端酷热天气,许多地区经历了极端干旱(图2),对农业生产产生较大影响,大部分农作物有一定程度的减产。2022年9月联合国粮农组织发布的月报,将2022年全球谷物产量预测从7月初预测的27.92亿t下调至27.74亿t,比2021年预估产量低1.4%(https://xueqiu.com/4587623715/231014661)。1964—2007年极端天气灾害造成全球粮食作物大面积减产,尤其是玉米、水稻、小麦,其中干旱和极端高温导致各国粮食减产9%~10%,发达国家的粮食产量损失比发展中国家高出8%~11%(纪瑞鹏等,2019;Lesk et al.,2016;Mirzabaev et al.,2023

图2

图2   2022年全球干旱脆弱性指数(联合国《2022年干旱数字》报告)

Fig.2   Global drought vulnerability index in 2022 (the United Nations report “Drought in Numbers 2022”)


在美洲,美国西部干旱已成为常态,加利福尼亚州经历了连续3 a的干旱炎热天气。美国2022年2月发表的一份报告中提到,在过去20 a里美国西部出现了1 200 a来最极端的干旱状况(https://www.toutiao.com/article/7146066479035892263/?wid=1675654806589)。美国国家海洋和大气管理局(National Oceanic and Atmospheric Administration,NOAA)发布:2022年3月美国西部90%以上的州遭受不同程度干旱的困扰,包括内华达、犹他、加利福尼亚的全部区域以及新墨西哥99%以上的区域。到6月中旬,几乎整个美国西部都经历了一定程度的干旱,其中大部分区域是严重干旱、极端干旱或罕见干旱(图3)。7月,美国西南部和东南部地区仍处于严重干旱状态,中南部地区的干旱面积不断扩大。就干旱程度来说,截止8月16日,美国有67%的区域遭受干旱,高于此前一周的66%,其中极度干旱和异常干旱地区达17%,略低于此前一周的19%,受旱的玉米、棉花、大豆、春小麦、冬小麦产区分别占28%、61%、24%、18%、56%(美国国家干旱监测网droughtmonitor.unl.edu)。2022年美国不同时期、不同地区的罕见干旱造成谷物、水果和蔬菜农作物产量比上一年骤降1/3,玉米产量或将刷新2012年以来干旱的最低水平,冬小麦产量创1963年以来的最低点,马铃薯收获面积同比下降4%,加州的水稻收成仅为正常年份的一半。农业专家称,气候变化导致美国重要农业区农作物产量下降、粮食价格上涨,粮食价格在短期内难以降下来(https://finance.sina.com.cn/money/future/roll/2022-09-07/doc-imqmmtha6288059.shtml)。据欧盟环境与安全监测(Global Monitoring for Environment and Security,GMES)计划监测结果,欧洲已经连续5 a出现干旱,2022年夏天干旱可能是欧洲大陆500 a来经历的最严重干旱,8月下旬干旱高峰期几乎一半的区域都出现“土壤湿度不足”的干旱状况,夏季高温干旱导致法国玉米产量降至30 a来最低。在非洲,位于非洲东部的非洲之角,2022年也经历了近10 a来最严重的干旱;索马里,2022年3—5月降水量为过去60 a来最低,主要河流朱巴河水位创1957年以来新低,河道几近干涸,水资源减少致使部分地区粮食产量下降60%~70%,约1 840万人面临严峻的粮食供应不确定问题;刚果和乌干达大部分地区经历了与平均水平相比非常干燥的情况。联合国发出警告,埃塞俄比亚东部、肯尼亚北部和索马里的干旱状况导致约2 200万人可能面临饥饿的风险(https://baijiahao.baidu.com/s?id=1744660835502289448&wfr=spider& for=pc)。

图3

图3   2022年6月21日美国干旱状况(美国国家干旱监测网: http://droughtmonitor.unl.edu

Fig.3   Drought situation in the United States on June 21,2022(National Drought Monitoring of United States from http://droughtmonitor.unl.edu


2012年夏季美国遭遇了56 a来最严重旱灾,导致严重的粮食产量下降、品质降低和价格猛涨,其中玉米和小麦价格分别上涨60%和26%,引发了全球性的粮食危机。同年,受干旱气候影响,俄罗斯、乌克兰、中国等国家小麦、玉米主产区减产,也引起了不同程度的粮食减产和价格上涨(张强等,2014)。2010年夏季俄罗斯遭受了130 a来最严重的干旱,导致近1/3的农作物受灾,因粮食减产而暂停小麦、玉米等农产品出口(https://www.docin.com/p-1435663470.html)。 2016年越南南部遭遇近百年来的严重干旱,干旱对水稻影响尤为严重,湄公河三角洲区域农业受灾严重(张强等,2017)。预计到21世纪末,气候变化将对非洲和中南美洲谷物产生负面影响,叠加物候影响,这将势必改变当前全球作物适宜种植区(https://m.thepaper.cn/baijiahao_20016300)。2022年11月15日,联合国秘书长在二十国集团峰会上表示,如果不采取协调行动,今年的“粮食负担能力危机”可能在2023年变成严重的全球粮食短缺问题,并呼吁现在就共同行动起来,防止明年发生“严重的粮食灾难”(https://news.un.org/zh/story/2022/11/1112462)。

1.2 国内重大农业干旱对粮食生产的影响

1.2.1 我国多地旱灾频发,作物受灾面积广、灾情重

我国旱灾呈多发、频发特征,农业受灾严重。2022年,我国西南、北方、长江中下游等多地区先后出现大范围、不同程度的严重干旱,覆盖河北、山西、山东、河南、安徽、湖北、陕西、甘肃和新疆等12个省(区),干旱持续日数长,长江流域的干旱时间超过50 d,受干旱影响的作物面积有387万hm2,其中93万hm2受干旱影响严重。据统计,7月以来,长江流域中旱及以上等级日数为45.6 d,较常年同期偏多31.0 d,为1961年以来历史同期最多;中旱及以上等级站数涉及667个,占全流域的96%(https://www.163.com/dy/article/HIEPM4LJ0514A42S.html),影响范围为1961年以来同期最大,严重干旱造成200多万 hm2 农田受灾,数亿人生活受到影响(张强,2022)。据国家气候中心气象干旱监测显示,8月21日江苏南部、安徽南部、河南西南部、湖北中西部、浙江大部、福建大部、江西、湖南、贵州大部、重庆、四川大部、甘肃东南部地区和藏区中北部地区仍有轻、中度到中、重度气象干旱,部分地区有特旱(图4)(https://www.jnw.cc/yqzt/202208/1626135.html)。进入9月,长江中下游地区仍持续干旱少雨,大部地区遭受夏秋连旱。9月28日,长江流域中下游大部地区仍存在中度及以上等级气象干旱,其中浙江西南部、安徽南部、湖北东部、湖南中南部、江西大部、福建大部等地有特旱(https://www.wuhan.com/xinwen/108763.html),对农业生产造成较大影响,大部分农作物产量有不同程度减产。

图4

图4   2022年8月21日中国干旱状况(http://cmdp.ncc-cma.net/cn/index.htm

Fig.4   Drought situation in China on August 21,2022(http://cmdp.ncc-cma.net/cn/index.htm


1.2.2 严重旱灾频发,作物成灾率上升、灾损加重

除了2022年重大农业干旱以外,回顾了1949—2020年的干旱状况,总体来说,全国发生轻旱、中旱、重旱以上的年份分别有55、46、26 a,发生频率分别为76.4%、63.9%、36.1%,发生特旱的年份有13 a,其频率为18.1%。多年来,因旱受灾和成灾面积分别为1 998.13、897.62万hm2,粮食损失1 630万t。其中,1949—2000年全国干旱受灾率、成灾率和因旱粮食损失率都呈现增加趋势,每10 a增速分别为1.7%、1.3%和0.6%,而2001—2020年干旱灾害呈减弱趋势。如果将第一个年代(1949—1959年)的成灾率和因旱粮食损失率作为基准看作1.0,则2000—2009年成灾率和损失率最高,分别是基准年代的3.9倍和2.9倍(图5),究其原因主要是2000年和2001年北方地区和华东、华中地区发生了特旱,因旱粮食损失较大,分别为5 996万t和5 480万t,相应的损失率分别达11.5%和10.8%,分别位列近70 a的第1位和第2位(倪深海等,2022)。

图5

图5   1949—2020年不同年代我国粮食因旱受灾率、成灾率和损失率与1949—1959年比值变化(倪深海等,2022

Fig.5   Changes of the ratio of drought-affected rate and disaster-formative rate and loss rate due to drought in different decades in China during 1949-2020 compared with 1949-1959 (Ni et al., 2022


图6是1980年以来全国9大地区重旱以上灾害发生频率。可以看出,1980年以后我国北方的内蒙古、西北地区、东北地区和黄淮海地区干旱灾害发生频繁且较为严重,重旱以上发生频率分别为45.0%、40.0%、35.0%和25.0%,受灾率和成灾率均超过15.0%和10.0%(倪深海等,2022)。从干旱发生范围来看,1980年以前发生重旱以上的区域波及10个省(市、区),而1980年以后扩增到16个省(市、区)(倪深海等,2022)。受气候变暖影响,近50 a来西北地区干旱频率、强度和受灾面积增加,损失加重。其中,春旱、秋旱频次增加,夏旱频次减少,春旱、秋旱多于夏旱,特、重旱多出现在春季,主要发生在西北地区东部,尤其是甘肃河东地区,如1995年干旱最严重,受灾面积208.7万hm2,成灾面积170.8万hm2,成灾率为45%,粮食减产150万t;其次是2000年,成灾率达34.9%,粮食减产135万t(邓振镛等,2007)。预计未来一段时间内,如果不采取有效应对措施,在气候变暖背景下到2030年中国种植业生产力总体可能下降5%~10%,其中小麦、水稻和玉米三大作物均以降低为主,2050年后受影响会更大(IPCC,2022)。

图6

图6   1980—2020年全国重旱以上频率分布(倪深海等,2022

Fig.6   The frequency distribution of severe drought and above in China from 1980 to 2020 (Ni et al., 2022


2 干旱对粮食作物生产的影响机制回顾

干旱是粮食作物生产中最主要的制约因子之一,在干旱半干旱区表现尤其显著(王春玲等,2017;Chaves et al.,2003;Boyer and Westgate,2004;Bandi et al.,2012;Hossain et al.,2012)。作物在生长季一段时间或多段时间内由于供水不足往往遭受不同程度和不同持续时间的干旱(刘宗元等,2014;McWilliam,1986;Gambetta et al.,2020),无论是依照严重程度划分的轻旱、中旱、重旱、特旱,还是从持续时间上划分的间歇性(断断续续)干旱和持续性干旱,都会对作物造成不同程度的伤害和影响。作物对干旱信号感知和传导后,通过分子、细胞、生理等不同水平层次上影响作物的形态、结构和功能(Ulrich et al.,2019;Gupta et al.,2020),这涉及作物的生长状况、生理生化及代谢过程、形态建成、产量形成等各种生物过程。干旱对作物的影响程度取决于干旱开始时间、发展速度、持续时长、环境条件及作物物种、生育期(苗期、拔节期、开花期、灌浆期、成熟期等)、生长阶段(营养生长和生殖生长)等(张强等,2015;Araus et al.,2002;Hirt and Shinozaki,2004;Zhu et al.,2005;Akram,2011;Boguszewska-Mankowska et al.,2018),还受作物器官、组织、细胞、亚细胞以及基因型等影响(赵鸿等,2016;Rampino et al.,2006;Zhou et al.,2007;Battaglia et al.,2007;Pinheiro and Chaves,2011;Qin et al.,2019)。图7描述了不同类型干旱对农作物的影响机理及作物在形态、生理和分子水平上对干旱缺水的响应机制。

图7

图7   不同等级干旱对植物的影响机制及植物在形态、生理和分子水平上对干旱的响应

Fig.7   Effect mechanisms of drought with different grades on plants and responses of plant to drought at morphology, physiology and molecule levels


2.1 干旱对作物生长发育的影响机制

不断变化的干旱扰乱了作物的生长周期,作物通过土壤供应水分进行光合作用制造有机物,有机物积累量的大小往往表现在植株的株高、茎粗、根冠、叶色、叶面积和产量形成等一系列动态变化过程中(雷俊等,2017;Boyer and Westgate,2004;Rampino et al.,2006;Loyla Rodríguez et al.,2016;Hirut et al.,2017)。水分亏缺会减缓植物生长发育,导致器官变小,阻碍花的发育和籽粒的灌浆,根是作物适应干旱最主要的器官(Ricardo,2012)。在作物形态方面,轻度干旱胁迫下作物水分供给不足,生物量向根部积聚,地下部分功能根的数量增多、长度和根重增加、块茎类作物的起芽量减少;随着干旱胁迫程度的增加,植株-根系的水分关系不断被扰乱(Farooq et al.,2009;Ricardo,2012),植株生长速率大幅下降,叶片数量减少和尺寸减小、光合叶面积减小、顶端分生组织细胞分裂减慢甚至停止、茎尖伸长区细胞伸长受到抑制、植株茎杆节间缩短、个体矮小(Zhu et al.,2005;Farooq et al.,2009;Akram,2011),同时叶片内膨压降低,叶肉细胞扩展受限,致使叶片组织疲软、卷曲、萎蔫、枯黄甚至死亡(白莉萍等,2004;Nicolas et al.,1985)。如小麦、玉米等禾谷类作物在拔节期和抽穗期遇到水分供应不足时,植株节间细胞扩展受限,导致植株低矮,甚至可能不抽穗;在灌浆期遭受水分胁迫时,则引起灌浆时间缩短、灌浆速率降低、植株衰老提早,导致作物穗数、穗粒数、粒重等构成要素降低,最终造成籽粒产量和品质下降(张军等,2014;赵鸿等,2016;EI Hafid et al.,1998;Lesk et al.,2016)。此外,干旱在更大程度上使植株生长受阻,水分利用效率显著降低,如马铃薯早期的干旱胁迫显著降低了水分的利用效率,大大减少了植株生长及其生物量的累积(Costa et al.,1997;Farooq et al.,2009)。间歇性干旱的发生和历时对作物生物量和产量的影响可能比干旱强度的影响大得多,取决于胁迫持续时间和物候期(Serraj et al.,2004),这间接降低了光合速率、CO2固定,最终导致同化产物减少(Mafakheri et al.,2010;Pinheiro and Chaves,2011)。

2.2 干旱对作物光合作用的影响机制

干旱对作物的主要影响是光合作用减少,这是由叶片扩张减少、光合机制受损、叶片过早衰老等引起的(Ambavaram et al.,2014)。土壤干旱或供水不足会直接影响植株冠层、叶片及其光合过程,缺水时作物根系吸收水分首先受到限制,向地上部分运送的水分不断减少,地上冠层部分生长减缓,干物质积累量减少(Zhu et al.,2005;Akram,2011),根冠比(地下部分与地上部分的比值)增加(Zhou et al.,2007)。一方面,土壤水分减少引起叶片水势下降、叶片含水量降低、保卫细胞压力势减小而散失水分,使得气孔开度减小甚至闭合,阻碍CO2气体交换,导致光合速率下降(毕建杰等,2008;Battaglia et al.,2007;Zhou et al.,2007);另一方面,干旱胁迫时叶片生长减缓,光合叶面积减小,淀粉水解作用增强,糖类积累增大,光合产物向汇器官运输受限,呼吸作用加强,呼吸消耗增大(赵鸿等,2008;赵鸿等,2016;Kobata et al.,1992),最终导致作物生产力下降(Jones and Corlett,1992)。研究表明,当土壤水分在作物可利用水分的50%以上时,作物可获得最大的产量(Mackerron and Jelferies,1986)。在作物生理水平上,干旱导致的作物光合作用减少是通过气孔限制和非气孔限制引起的,在轻度至中度干旱胁迫下叶片的气孔开放和闭合受到影响,气孔因素占主导作用,抑制生物量的积累;在严重干旱胁迫下非气孔因素占主导地位(Angelopoulos et al.,1996),限制了光化学和酶活性,损伤叶绿体中光抑制,从而影响生理过程和生化代谢(Baker,2008;Xu et al.,2010)。此外,在干旱胁迫下气孔关闭会降低叶肉中CO2可用性,电子传递和生化途径变化会导致光合作用减少(Boyer,1976;Cornic et al.,1983;Genty et al.,1987;Obidiegwu et al.,2015)。

2.3 干旱对作物生理生化过程的影响机制

植物生长调节剂(外用)和植物激素(内用)是影响植物生理过程的物质,其浓度很低时起调节作用,如脱落酸、乙烯、生长素、赤霉素、细胞分裂素等(Morgan,1991;康书江等,1997)。在分子和生化水平上,植物通过在转录和蛋白表达过程中改变调节反应来感知和响应干旱胁迫,从而影响生化途径和代谢过程,进而影响生理和发育过程(Mane et al.,2008;Vasquez-Robinet et al.,2008;Zinselmeier et al.,1995)。在土壤干旱条件下植物通常会产生脱落酸(Abscisic Acid,ABA),它是一种主要的化学根-芽胁迫信号(Davies and Zhang,1991),是通过激活对干旱响应的基因表达而表征细胞反应的一个关键信号(Chaves et al.,2003)。ABA含量可作为植物抗旱性的评价指标之一,其与籽粒的生长速率有关。当土壤干旱时失水的根系产生根源信号ABA,通过木质部输送到地上部调节气孔开闭(Davies and Zhang,1991),作物根冠、叶片、花、籽粒生长进程中ABA含量明显上升(赵鸿等,2008;张玉书等,2012;Obidiegwu et al,2015),且随着干旱胁迫程度的加剧而增加,如受到水分胁迫时小麦籽粒生长减慢、结实率降低,玉米胚乳细胞分化率降低。乙烯(Ethylene)也是干旱胁迫下植物体产生的激素,在干旱感知时乙烯通过蒸腾流将其他激素信号与ABA一起发送到嫩芽中。干旱引发的乙烯释放过量,会引起小麦、玉米等籽粒产量下降(赵鸿等,2008;Obidiegwu et al.,2015)。

叶片对CO2的同化主要受气孔关闭、膜损伤和各种酶活性的干扰,尤其是CO2固定酶和三磷酸腺苷(ATP)合成酶,通过光呼吸途径增强的代谢物通量增加组织的氧化负荷,该过程产生活性氧,干旱胁迫下活性氧对生物大分子的损伤是影响植物生长的主要因素之一(Tezara et al.,1999;Farooq et al.,2009)。干旱缺水时,作物体内活性氧的积累受到破坏,抗氧化酶活性降低,对活性氧的清除能力下降,致使作物避免或减轻受氧化伤害(赵鸿等,2008;Obidiegwu et al.,2015)。轻度干旱可引起叶片中过氧化氢酶(Catalase,CAT)活性升高,而重度干旱下CAT活性降低。随着干旱胁迫的持续,叶片中过氧化物酶(Peroxidase,POD)活性渐增,丙二醛(Malonic Dialdehyde,MDA)含量增大,膜脂、蛋白质和核酸氧化加剧,明显抑制了植株的生长发育(张玉书等,2012;Obidiegwu et al.,2015)。马铃薯在遭遇不同程度干旱胁迫时,随着胁迫程度的增加,植株体内超氧化物歧化酶(Superoxide Dismutase,SOD)活性下降,马铃薯受自由基损伤加重,无法起到保护细胞、去除活性氧自由基的作用,细胞受伤害增大、植株老化加速。在极度干旱胁迫下,当活性氧浓度超出清除剂的潜力时,干旱对不同植物细胞包括脂质、蛋白质和脱氧核糖核酸(Deoxyribo Nucleic Acid,DNA)造成不可修复的损害,导致植物细胞死亡(Obidiegwu et al.,2015;Gupta et al.,2020)。

2.4 作物对干旱的感知和抵御

从分子生物学角度看,细胞水分损失是干旱胁迫的标志(Gupta et al.,2020)。作物感知缺水信号并启动应对策略的能力被认为抗旱性。作物抗旱性是一个复杂性状,通常以避免或忍耐细胞脱水而防止水分流失来渡过干旱(Turner,1986;Machado and Paulsen,2001),主要表现为逃旱、避旱和耐旱等。逃旱是指作物通过调控生长发育期(提前或滞后水分敏感时段)来逃避干旱胁迫,一般发生在作物生长受阻之前;避旱,为减少水分损失,在干旱条件下保持高水势的能力,作物通过增加体内含水量避免组织损伤,涉及植株快速生长、叶片卷曲、叶面积减小、气孔开闭等(Morgan,1984;Turner,1986;Morgan,1991;Machado and Paulsen,2001;Gupta et al.,2020);耐旱是指组织内部含水量较低,干旱期间仍需保持生长耐力,在水分亏缺加重情况下通过保持充足的细胞膨胀来维持新陈代谢(Gupta et al.,2020)。

渗透调节、渗透保护、抗氧化和清除防御系统是作物抗旱性的重要基础。作物表现出一系列抵御干旱胁迫的机制,主要包括通过增加扩散阻力来减少水分流失、通过深层根系增强水分吸收和有效利用、通过更小和多汁的叶片来减少蒸腾损失(Farooq et al.,2009;Supratim et al.,2016)。在营养物质中,钾离子有助于渗透调节。低分子渗透液,包括甜菜碱、脯氨酸和其他氨基酸、有机酸和多元醇等,在干旱条件下能维持细胞功能。在分子水平上目前已经鉴定出若干个干旱响应基因和转录因子,如脱水响应元件结合基因、水通道蛋白、胚胎发育后期丰富的蛋白质和脱氢蛋白等(Farooq et al.,2009;Supratim et al.,2016)。

3 农业干旱灾害监测指标技术研究进展

农业干旱指标是农业干旱监测预测的基础,研发有效适宜的农业干旱监测指标、方法和系统,密切关注农业旱情发展变化,完善农业旱灾监测评价体系,精确评估农业旱灾影响程度,可为应对农业抗旱减灾提供一定的科学依据,也是保障国家粮食安全的重要举措。随着农业干旱监测工作的不断发展和完善,农业干旱评价指标的研发在传统方法基础上有了较大进展和提高。

3.1 农业干旱监测指标

在农业干旱监测中,农业干旱指标主要有气象指标、土壤墒情指标、作物生理生态指标和一些其他指标。气象指标包括降水距平百分数、连续无有效降水日数、湿度指标和Z指数等(孙荣强,1994;姚玉璧等,2013;国家气象中心等,2015;Zhang et al.,2009)。土壤墒情指标包括土壤相对湿度、土壤有效水分存储量、土壤水分旱灾指数等(国家气象中心等,2015;Hollinger et al.,1993;Dai et al.,2004)。作物生理生态指标主要是一些基于植株生长和光合特性的生理参数,用来衡量植株水分亏缺状况,如光合速率、蒸腾速率、气孔导度、复水后的光合恢复、叶水势、茎秆水势、叶绿素、叶片相对含水量、叶片扩展速率、作物水分胁迫指数、冠层温度、块茎碳同位素鉴别等(姚玉璧等,2013;张强等,2014;赵鸿等,2018;纪瑞鹏等,2019;Jefferies,1993;Medrano et al.,2002;Zakaluk and Ranjan,2006;Ricardo,2012;Ramirez et al.,2016),这些基于植株的监测指标更加方便、适时,但有些地区由于没有专用测量仪器而导致部分指标不能广泛应用。

此外,还有一些重要的监测指标如帕尔默干旱指数、作物水分亏缺指数、作物水分指数、农田与作物形态农业干旱指标、作物特征旱灾指数、减产率农业干旱指数、综合农业干旱指数、区域性农业干旱指标以及农业干旱过程的确定和评估等(Palmer,1968;李柏贞和周广胜,2014;国家气象中心等,2015)。其中,帕尔默干旱指数是目前国际上应用最广泛的干旱指标,它引入了水量平衡概念,包含降水量、蒸散量、径流量和土壤水分储存量等,用于监测以月为时间尺度的干旱(表1)。该指数不仅考虑了当前的水分条件,还考虑了前期水分状况及干旱持续时间等,具有较好的时空可比性,能够较好地监测评估较长时期的干旱,同时也是衡量土壤湿度和确定干旱开始和终止时间最有效的评估方法,但该指标考虑的因素较多,对资料要求较高,无法实现作物对水分亏缺响应的逐日监测。

表1   帕尔默干旱指数等级划分

Tab.1  The grade classification of Palmer drought severity index

等级类型帕默尔指数
1无旱(-0.5,0.5]
2初旱(-1.0,-0.5]
3轻旱(-2.0,-1.0]
4中旱(-3.0,-2.0]
5重旱(-4.0,-3.0]
6特旱≤-4.0

新窗口打开| 下载CSV


3.2 农业干旱监测预警系统

针对农业干旱监测预警和风险评估,国内外组织和学者相继开展了一系列研发工作,如2007年以来,作为政府间的国际组织,地球观测组织(Group on Earth Observations,GEO)推动了全球农业监测计划(Global Agricultural Monitoring,GEO-GLAM),就农业干旱监测进行了大量探索工作,该计划支持发展和改进农业监测系统,旨在利用地球观测数据开展农业生产监测预警、农业土地利用变化观测、农业气象条件预测等活动,来加强全球粮食产量监测评估及对存在粮食安全风险国家的监测,增强全球农业监测能力和监测系统的建设。源于该计划的支持,我国自主研发的全球农情遥感监测系统(CropWatch云平台)已成为全球主要的3个农情监测系统之一,中国作为首个推出粮食遥感监测云服务的国家,已为全球超过170个国家和地区提供独立的农情信息服务,提高了粮食生产信息的透明度(范锦龙等,2014;纪瑞鹏等,2019https://edu.yunnan.cn/system/2022/09/09/032270206.shtml)。此外,GEO也推动了全球综合地球观测系统(Global Earth Observation System of Systems, GEO-SS),主要协调地球观测数据的广泛应用及提高应用能力来促进可持续农业、风险评估、粮食安全、市场效率等,通过发布天气预报和极端天气事件早期预警、中长期气候预测等信息支持农业可持续管理(范锦龙等,2014)。

2006年,美国开始建设协调综合的国家干旱早期预警系统(Drought Early Warning System, DEWS),随后又建成了国家综合干旱信息系统(National Integrated Drought Information System,NIDIS);2007年,地球观测部计划未来建立全球干旱早期预警系统(Global Drought Early Warning System,GDEWS)。美国利用MODIS(Moderate Resolution Imaging Spectroradiometer)产品监测全球干旱及旱灾造成的作物减产分布,用户可通过网络界面查询预先定置区域的数据并分析农作物长势和旱情(范锦龙等,2014)。此外,美国国家干旱减灾中心(National Drought Mitigation Center,NDMC)联合美国农业部(The United States Department of Agriculture,USDA)等相关部门研发包括气象指标、土壤墒情指标的干旱监测系统(张晓煜等,2011;纪瑞鹏等,2019)。中国风云卫星也具有监测全球干旱的能力,农业监测是其一个关键的应用领域,如FY-3A和FY-3B携带的可见光近红外扫描辐射计(Visible Infrared Radiometer,VIRR)和中分辨率成像仪(Medium Resolution Spectral Imager,MERSI)是农业监测的关键传感器,可监测不同尺度干旱灾害的发生发展(张晓煜等,2011;范锦龙等,2014)。此外,中国国家气候中心也开展了干旱监测、预测预警和影响评估业务,发布全球旱涝指数、中国气象干旱综合指数、土壤相对湿度等系列干旱产品和公告,为抗旱减灾提供了重要的决策服务信息(范锦龙等,2014)。在国家科技部支持下,气象、农业等部门联合运用气象灾害预测预报技术进行重大农业气象灾害监测预测和预警技术的攻关研发(陈德亮,2012;纪瑞鹏等,2019)。

3.3 农业干旱遥感监测方法

卫星遥感、地面遥感等探测技术的发展,为农作物旱情监测开辟了一条新途径。目前,国内外学者相继研发了多个农业干旱遥感监测指数,主要有以下四大类:(1)土壤水分指数,如表观热惯量(Apparent Thermal Inertia,ATI)、微波反演土壤水分等;(2)作物形态及绿度指数,如归一化植被指数(Normalized Difference Vegetation Index,NDVI)、植被状态指数(Vegetation Condition Index,VCI)、标准植被指数(Standardized Vegetation Index,SVI)等;(3)冠层温度指数,包括归一化温度指数(Normalized Difference Temperature Index,NDTI)、作物水分胁迫指数(Crop Water Stress Index,CWSI)、温度植被干旱指数(Temperature Vegetation Dryness Index,TVDI)、植被供水指数(Vegetation Supply Water Index,VSWI)等;(4)植被水分指数,包括全球植被水分指数(Global Vegetation Moisture Index,GVMI)、归一化差异水分指数(Normalized Difference Water Index,NDWI)等。这些指数各有优缺点,基于作物光谱信息,结合地面站点观测数据,可对大范围农作物干旱进行监测和评估,取得了较好的效果(李柏贞和周广胜,2014;纪瑞鹏等,2019;Anderson,2011)。

4 农业干旱应对技术研究进展

农业干旱应对主要包括农业干旱的减轻和防御两方面,农业干旱的发生、发展与气象干旱、水文干旱等其他类型干旱紧密相关(吴杰峰等,2017),因此在应对和防御农业干旱时,不仅要关注农业干旱,还要加强其他类型干旱的监测和管理。农业干旱的减轻措施是指用来抵御干旱灾害的不利影响、环境恶化以及技术风险的工程措施(如基础设施、修筑堤坝、工程建设等)或非工程措施(如政策法规、政府决策、公众意识等)。农业干旱的防御措施是指在干旱灾害发生前制定的政策规划、制度以及灾害的监测、预测或预警,以确保灾害发生时各方面的协调与有效响应(冯定原和邱新法,1995;陆亚龙和肖功建,2001)。粮食生产对干旱的减轻、防御和适应技术对策见图8

图8

图8   粮食生产对干旱的适应、减缓和应对技术

Fig.8   The adaptation, mitigation and coping technologies to drought for crop production


4.1 国际上粮食生产应对干旱的技术措施

国际干旱减灾中心(International Centre for Drought Mitigation,IDMC)提出应对农业干旱的建议:首先要开展农业(田)灌溉效率的研究,鼓励安装节水灌溉设施,提供最优的农业水管理及灌溉设施维护措施;其次,鼓励各种节水农业灌溉新技术,并在干旱期为农业种植方案提供指导;第三,做好农业干旱监测,提供实时的土壤湿度和土壤水分蒸散发信息以及灌溉作业和安排;最后,面向农民推动农业/作物保险项目的发展(朱增勇和聂凤英,2009)。

美国、澳大利亚等受干旱影响较重的国家,在过去30 a间,率先摒弃了被动应急抗旱的方式,积极采取主动的干旱风险管理模式,即预警防旱早于应急救援(Collins et al.,2016),有效应对可能发生的干旱灾害(Fu et al.,2013;Hervás-Gámez and Delgado-Ramos,2020)。具体包括3个方面:首先,通过制定抗旱预案制度、发布国家和区域干旱政策、提高干旱监测预警能力、加强干旱灾害风险评估等手段,增强全社会防御干旱的能力(Wilhite et al.,2007;Peters-lidard et al.,2021;Steinemann et al.,2015;Zarei et al.,2020);其次,在干旱易发区域或干旱发生后,采取强化各部门需水管理、普及淡水资源化以及提高水分利用效率措施,如种植抗旱作物、农业节水灌溉、废水再利用及微咸水灌溉等,也可采用工程抗旱、生物抗旱等措施尽可能降低旱灾造成的损失(WMO and GWP,2014);第三,对于干旱造成损失的,政府制定相应政策评估受损,给予救济金补贴,让受灾严重的群体尽快恢复生产生活(WMO and GWP,2017)。此外,澳大利亚还利用地下含水层储水-回灌技术发展农业节水灌溉,即把冬天地表多余的水资源通过压力储存到地下100 m左右的含水层,遇到干旱月份再抽出来进行农田灌溉;通过地理信息系统(Geographic Information System,GIS)、遥感系统(Remote Sensing,RS)、全球定位系统(Global Position System,GPS)等3S系统和制图(Mapping)、监控(Monitoring)、管理(Management)系统等3M系统进行节水灌溉,以实现节约水资源的目的(https://world.qianlong.com/2022/0830/7575142.shtml)。

以色列国家面对水资源严重贫乏的现状,首先制定了《水法》,颁布全国水资源管理和用水政策,实施工农业用水配额,大力推行农业节水灌溉、废水处理灌溉、微咸水灌溉等措施,将每一滴水都用到了极致(韩萍,2002)。瑞典、荷兰、德国等欧洲国家利用人工补给含水层来增加水资源量,极力发挥地下水库调节作用以抵御干旱风险(https://www.docin.com/p-2012740929.html)。欧盟也制定了一系列旱灾风险管理战略,从水资源危机管理向干旱风险管理转变(https://world.qianlong.com/2022/0830/7575142.shtml)。埃塞俄比亚、肯尼亚、索马里等非洲国家则通过积极引进抗旱作物和抗旱技术应对农业干旱造成的粮食短缺问题(吴爱民,2011),如为缓解干旱造成的粮食短缺,引进了具有耐旱性的玉米新品种,水稻高杆品种变为矮杆,并辅配农药和农业机械,解决了19个发展中国家的粮食自给问题(https://world.qianlong.com/2022/0830/7575142.shtml)。

4.2 国内粮食生产应对干旱的技术措施

我国也开展了一系列应对农业干旱的新技术途径和优良措施,主要有:

第一,选择高产优质及抗旱、耐旱品种。培育与干旱相适应的作物新品种和优良品种,或者改良品种,特别是兼顾抗旱与水资源高效利用的品种(山仑,2011;张强等,2012b)。开展水稻、玉米、小麦、马铃薯等作物新品种选育,对提高主粮生产能力具有重要作用。改良作物抗旱性的途径主要分为生物工程技术和生物激素鉴定两方面,在生物工程技术中传统育种利用自然等位基因适应特征的遗传多样性来改良植物抗旱性,基因组精准编辑工具和全基因组关联分析(Genome-wide Association Study,GWAS)等新技术的出现,在挖掘可提高抗旱性和产量的等位基因方面具有巨大应用潜力。生物刺激素中,一些小肽或激素激动剂的鉴定有助于精细调控干旱响应,在提高抗旱性同时保持了作物产量。这些技术的应用转化可为作物生产提供应对干旱的新策略(Gupta et al.,2020)。

第二,根据气候资源特点,调整种植结构和种植制度以趋利避害。在半干旱地区通过实行“压夏扩秋”(即压缩春小麦、春玉米等春季作物种植比例)措施,扩大适应干旱能力较强且与降雨同季的马铃薯、大豆等秋季作物种植面积,应对干旱的季节变化特征。在以雨养农业为主的陇东黄土高原区,农业生产中稳定冬小麦种植面积,增加玉米面积,发展马铃薯、豆类、糜子、谷子等抗旱性较强的作物(邓振镛等,2007;张强等,2012b;肖国举和李裕,2012)。合理安排和调整作物种植面积和布局,加强水热资源的合理开发利用和管理,变被动抗旱为主动抗旱,管好、用好当地水资源,充分利用大气降水(张强等,2012b;王润元等,2015;鲍文中和周广胜,2017)。

第三,在水资源缺乏的灌溉区和干旱山区推行水旱并举方略,逐步建立灌溉农业、旱地农业、设施农业和半旱地农业并存的农业用水新格局(山仑,2011),在黄淮海地区已有主动采用半旱地农业的实例,如山东恒台县采用的低定额灌溉条件下保持高产已初见成效,节水灌溉、少灌的半旱地轮作体系,也是比较成功的经验之一(山仑,2011)。灌溉区调整灌溉模式,采用滴灌、喷灌等节水灌溉技术。在旱作农业区,根据农作物各生育期耗水亏损值进行分阶段、分次补充灌溉,在有条件的地区,基于物联网技术进行精细化灌溉和调控用水。开发农业用水新水源,如垄沟集雨、保墒集水、蓄集雨水、再生水、凝结水等都可作为补充水源供给农田,也可通过开发空中水资源补充陆地水资源不足(山仑,2011;张强等,2012b;肖国举和李裕,2012;王润元等,2015;熊友才和李凤民,2014)。

第四,因地制宜推广保护性耕作措施,可同时起到保水、保土、培肥、增产的综合作用,如垄沟种植、垄沟径流集水、地膜覆盖、秸秆覆盖、免耕栽培等技术。采取多种形式的带状间作为中心的保护性耕作技术,缓解气候变暖加剧引起的水资源供求矛盾。推行麦类等条播作物与马铃薯、玉米、大豆等穴播作物或主粮作物与畜草合理间作、轮作等技术;合理套作,增加复种指数,提高耕地利用效率,如小麦套种马铃薯、小麦套种玉米等,可不同程度地提高作物产量,相当于在半干旱偏旱区的旱作农田上实现一年二熟(山仑,2011;张强等,2012a;张强等,2012b;肖国举和李裕,2012;鲍文中和周广胜,2017;Zhao et al.,2012;Zhao et al.,2014)。

第五,改进施肥方式和用量,测土施肥,配合深施、混施等施肥方式,提高肥效和作物对营养元素的利用率,如玉米施氮增效不仅可以获得较高产量、水分和氮素利用效率,还能降低硝态氮的残留量,有效减缓土壤污染(肖国举和李裕,2012;Qiang et al.,2019a)。冬小麦测土施肥,可用于诊断其氮营养状况,提高水分利用效率、增加叶面积指数和干物质积累(肖国举和李裕,2012;Qiang et al.,2019b)。未来半干旱地区的小麦生产,可视温度、CO2浓度升高情况适量采用低磷肥、低氮肥投入,这将更经济、适宜(王润元等,2015;肖国举和李裕,2012;鲍文中和周广胜,2017)。

第六,加强农业干旱监测预测预警,强化防旱减灾应对准备。在出现旱情的重点地区加强土壤墒情监测和定点调查,构建区域信息共享平台,及时掌握旱情发展蔓延动态;加快构建农业农村气象灾害预警信息发布系统,搭建多种渠道的气象服务信息传播平台,建立气象灾害风险评估体系,研发基于影响的农业干旱监测预测预警技术,针对农业生产中重要环节和农作物生长发育的水分需求,提升农业防旱减灾服务能力,定期发布土壤墒情监测公报、干旱监测公报、农业气象旬(周)报等农业气象服务产品(姚国章和袁敏,2010;张强等,2014;周广胜等,2016)。总之,在确保国家和区域(或省、市、区)粮、棉、油需求安全前提下,充分利用水热资源优势,压缩高耗水作物和品种的种植面积,实行农业补贴政策,实现农业经济和水资源安全协调发展(鲍文中和周广胜,2017)。

5 面临的突出科学问题

综上所述,不同程度的干旱阻碍了作物生长发育进程,造成生产力下降,对世界粮食生产产生了广泛、巨大的影响,涉及作物的形态表现、产量形成、生理过程、生化代谢以及细胞和分子水平等各方面。围绕重大农业干旱问题,截止目前已研发了若干农业干旱监测指标、系统和应对策略等,取得了重大进展和成效,但因作物处于土壤-植物-大气(Soil-plant-atmosphere Continuum,SPAC)连续体中,生长环境极其复杂,涉及气温、降水、光照、土壤等诸多方面,故而也存在一些问题。

(1)干旱条件下水分限制对作物的影响研究中,测试的各种指标和临界值都是在特定的区域、气候、土壤类型、土壤肥力、作物种类和品种等因素下进行的,其代表性一定程度上被削弱了。所以,同一作物或不同作物在多地区对干旱缺水的响应表现异同?干旱响应时最大值或最小值的临界阈值?如何确定相应的敏感指标?……这些都是迫切需要研究的问题,以利于作物对干旱适应措施的及时制定和防旱减灾工作的顺利进行。

(2)干旱对农作物的影响机制研究,更多关注于作物生长阶段水分短缺对作物形态、光合生理和生化指标、水分利用效率、产量等的影响。然而,气象干旱与农业干旱、水文干旱、生态干旱等之间的相互关系及其反馈机制等研究还不够深入,对农业干旱灾害的成因、形成机理、过程特征、定量表述等仍然缺乏更深入的认识,与此有关的基础理论仍未建立。多数成灾机理研究偏重于静态的产量分析或某生育期受害的临界值,忽视了作物从受害到成灾这一动态过程中生理生态参数持续发展特征及致灾临界点,致使在干旱监测过程中难以准确判断旱灾形成与否?而这恰恰是科学应对农业旱灾的基础和前提。因此,开展农业干旱致灾机理研究,认识作物从受旱到成灾过程中生理生态参数的持续变化特征及突变的动态轨迹,如何判断和确定持续干旱过程中作物受旱害的临界值?这一临界值对应的生理生态特征有何表现?以及受害致灾时土壤水分状况如何?致灾的生理机制和关键因子等?这些都是亟待解决的一系列科学问题。国家和地方迫切需要对不同区域、不同类型干旱出现时间、范围、强度以及发生、发展和消退过程进行准确监测和早期预警,以提升防旱减灾能力,减少干旱造成的经济损失,为我国干旱防灾减灾、保障粮食安全提供有力的科技支撑。

(3)降水(灌溉)是农田干旱解除或缓解的重要途径,农田干旱的解除研究主要关注于降水事件的平均状态和断面,而对降水过程特征对旱灾解除的影响、效应及其调控机制的认识仍然有限,难以准确捕捉一次强度不同的降雨对不同程度旱灾产生的影响?不同受旱作物的响应如何?旱灾能否缓解或解除?如何判断和识别?解除的程度和时间? 因此,深入剖析降水前后土壤、植物各指标临界值的动态变化及其关联性,认识降雨过程特征对干旱灾害的解除过程,确定解除时降水量和降水强度的临界值?这有助于科学认识不同降雨过程对农田干旱的解除能力和时效,对半干旱区抗旱减灾具有重要的理论意义和应用价值。

(4)有效适宜的农业干旱监测指标是科学、准确评估旱灾影响程度的重要基础,也是抗旱减灾、保障国家粮食生产的重要途径之一。目前已经建立了一系列表征作物干旱发生发展的指标,主要包括传统干旱指标、土壤墒情指标、作物生理生态干旱指标和遥感干旱指标等,这些指标在一定程度上反映了作物受旱程度,对预防和减缓旱灾对作物生长的不利影响起到了重要作用,可是大多指标仅描述了作物对大气干燥程度、土壤供水能力等的响应,而对作物本身的耐旱能力以及相互影响等考虑不多,不能综合反映植物缺水程度,难以实现长时期、大范围的农田干旱动态监测与准确评估。近些年来,迅速发展的遥感探测技术逐渐弥补了这一缺陷,可实现连续动态的大范围监测。因此,加强综合干旱监测指标和体系的开发研制,基于遥感观测信息和地面气象、作物观测资料等多源数据融合,研发适于较长时期、大范围作物干旱动态监测和受旱灾损程度准确评估的综合指标方法,对于科学制定防旱减灾举措、确保农业生产和粮食安全具有重要的应用价值。

6 未来研究展望

在气候变暖背景下,全球干旱事件明显增多、增强,气象干旱多发性、突发性、极端性日益突出,对农业生产的影响愈加凸显,需要加强气象干旱、农业干旱及其影响机理研究,深刻认识把握干旱灾害自身演变规律,研发基于影响的干旱监测预测预警技术,提升气象干旱灾害监测预测预警能力。干旱成因和影响极其复杂,现有干旱监测预测预警及影响评估技术仍不能很好地满足防旱减灾的需要,发展干旱形成基础理论,提高干旱监测预测预警及影响评估技术仍是我们必须面对的紧迫课题。

农业防旱减灾是一项复杂的社会系统工程,涉及旱灾发生前的监测、预报、预警和防御,以及灾害发生时抗灾、灾后救灾和重建等多个方面。依照“工程措施与非工程措施相结合”的原则,在加强水利工程设施建设的同时,还需强化政策法规、监测预警、旱中保障等抗旱非工程措施,构建旱情监测预警和决策系统,提高抗旱减灾工作的科学化、现代化和规范化水平(姚国章和袁敏,2010;周广胜等,2016)。鉴于旱灾对农业生产影响较重,急需建立一个科学有效的农业旱灾保障机制,但目前我国这种保障机制仍较滞后,相应的农业保险等项目发展缓慢(姚国章和袁敏,2010;周广胜等,2016)。我国在干旱灾害管理方面的法律法规和政策尚有待健全,需借鉴欧美等发达国家经验,由被动的应急抗旱向主动的防旱模式转变(毛晓华,2020;屈艳萍等,2013)。同时,我国在各类干旱(包括气象、农业、水文等)监测方面已开展了大量研究工作,但缺乏各部门间的有效协作机制,即气象、水文、农情、工业取水用水和相应供水部门之间的信息共享和联防联动。干旱整体评价指标构建上还需借鉴国外的干旱综合评价指标体系(康天军和李军波,2018;陈滢,2020)。未来,我国还需制定更为详细的干旱灾害防御规划,让公众参与到干旱防灾、减灾工作中,构建全民参与的全社会防灾减灾新格局。

参考文献

白莉萍, 隋方功, 孙朝晖, , 2004.

土壤水分胁迫对玉米形态发育及产量的影响

[J]. 生态学报, 24(7): 1 556-1 560.

[本文引用: 2]

鲍文中, 周广胜, 2017. 甘肃气象保障蓝皮书:甘肃农业对气候变化的适应与风险评估报告[M]. 北京: 社会科学文献出版社.

[本文引用: 4]

毕建杰, 刘建栋, 叶宝兴, , 2008.

干旱胁迫对夏玉米叶片光合及叶绿素荧光的影响

[J]. 气象与环境科学, 31(1): 10-15.

[本文引用: 2]

陈德亮, 2012.

气候变化背景下中国重大农业气象灾害预测预警技术研究

[J]. 科技导报, 30(19): 3.

[本文引用: 1]

陈滢, 2020.

新时代防汛防旱信息化能力提升思考

[J]. 中国防汛抗旱, 30(12): 94-97.

[本文引用: 1]

邓振镛, 张宇飞, 刘德祥, , 2007.

干旱气候变化对甘肃省干旱灾害的影响及防旱减灾技术的研究

[J]. 干旱地区农业研究, 25(4): 94-99.

[本文引用: 3]

范锦龙, 张明伟, 曹广真, , 2014.

全球干旱卫星监测计划

[J]. 气象科技进展, 4(5): 54-57.

[本文引用: 5]

冯定原, 邱新法, 1995.

农业干旱的成因、指标、时空分布和防旱抗旱对策

[J]. 中国减灾, 5(1): 22-26.

[本文引用: 1]

国家气象中心, 中国农业科学院农业资源与农业区划研究所, 中国气象局沈阳大气环境研究所, 2015. 农业干旱等级: GB/T 32136—2015[S]. 北京: 中国标准出版社.

[本文引用: 4]

韩萍, 2002.

以色列的抗旱措施

[J]. 治黄科技信息, 1: 29-30.

[本文引用: 2]

纪瑞鹏, 于文颖, 冯锐, , 2019.

作物对干旱胁迫的响应过程与早期识别技术研究进展

[J]. 灾害学, 34(2): 153-160.

[本文引用: 6]

康蕾, 张红旗, 2014.

我国五大粮食主产区农业干旱态势综合研究

[J]. 中国生态农业学报, 22(8): 928-937.

[本文引用: 2]

康书江, 赵春江, 杨宝祝, 1997.

小麦内源激素脱落酸研究进展

[J]. 麦类作物, 17(3): 47-50.

[本文引用: 1]

康天军, 李军波, 2018.

我国防旱抗旱法制体系的完善——基于政策指引及比较法的进路

[J]. 西北农林科技大学学报(社会科学版), 18(6): 138-145.

[本文引用: 1]

雷俊, 张凯, 姚玉璧, , 2017.

半干旱区黑膜覆盖对马铃薯光合特性及产量的影响

[J]. 干旱气象, 35(6): 1 036-1 041.

[本文引用: 1]

李柏贞, 周广胜, 2014.

干旱指标研究进展

[J]. 生态学报, 34(5): 1 043-1 052.

[本文引用: 3]

李稚, 李玉朋, 李鸿威, , 2022.

中亚地区干旱变化及其影响分析

[J]. 地球科学进展, 37(1): 37-50.

DOI      [本文引用: 1]

全球变暖加剧了中亚地区的干旱威胁,使得因干旱引发的水资源短缺、生态退化及跨境河流争端等问题更加突出。研究显示:过去半个多世纪,基于帕默尔干旱指数表征的中亚地区干旱程度整体变化趋势不显著,但伴随着区域的高温波动,中亚地区帕默尔干旱指数自2000年以来呈现明显下降趋势,约65%的区域表现为干旱化程度加剧,且在未来共享社会经济路径下中亚地区干旱强度持续增强。设计“去趋势”数字试验定量解析干旱指标对气候变化中各项因子的敏感性,发现气温对中亚干旱化趋势影响较大,降水变化加大了干旱的变率。从不同干旱亚类来看,中亚地区极端干旱区和干旱区面积以0.02×10<sup>4</sup>和0.22×10<sup>4</sup> km<sup>2</sup>/a的速率增加,主要集中在新疆塔里木盆地北缘和哈萨克斯坦南部等地区。同时,平原荒漠区的植被蒸腾和土壤水耗散量加大,浅层土壤含水量(0~10 和10~40 cm)分别约有84%和81%的区域表现为下降趋势,导致一些依靠地下水和土壤水维系生存的、抗旱性弱的浅根系荒漠植物衰亡,生态农业干旱加剧,且水文干旱呈更加复杂的态势,研究结论为中亚地区水资源规划管理和生态保护提供科学依据。

刘宗元, 张建平, 罗红霞, , 2014.

基于农业干旱参考指数的西南地区玉米干旱时空变化分析

[J]. 农业工程学报, 30(2): 105-115.

[本文引用: 2]

陆亚龙, 肖功建, 2001. 气象灾害及其防御[M]. 北京: 气象出版社.

[本文引用: 2]

吕娟, 高辉, 孙洪泉, 2011.

21世纪以来我国干旱灾害特点及成因分析

[J]. 中国防汛抗旱, 21(5): 38-43.

[本文引用: 2]

毛晓华, 2020.

防旱抗旱减灾长效机制的构建策略探究

[J]. 南方农业, 14(20): 166-167.

[本文引用: 1]

倪深海, 吕娟, 刘静楠, , 2022.

变化环境下我国干旱灾害演变趋势分析

[J]. 中国防汛抗旱, 32(10): 1-7.

[本文引用: 8]

屈艳萍, 吴玉成, 苏志诚, 2013.

国际干旱灾害管理实践及对我国的启示

[J]. 中国水利, 8: 14-16.

[本文引用: 1]

山仑, 2011.

科学应对农业干旱

[J]. 干旱地区农业研究, 29(2): 1-5.

[本文引用: 6]

孙荣强, 1994.

旱情评定与灾情指标之探讨

[J]. 自然灾害学报, 3(3): 49-55.

[本文引用: 2]

覃志豪, 徐斌, 李茂松, , 2005.

我国主要农业气象灾害机理与监测研究进展

[J]. 自然灾害学报, 14(2): 61-69.

[本文引用: 2]

王春玲, 李宏宇, 曾剑, , 2017.

黄土高原半干旱区马铃薯气候适宜度模拟及其时空变化特征

[J]. 干旱气象, 35(5): 751-760.

DOI      [本文引用: 1]

为了研究气候变化对西北半干旱地区马铃薯生产的影响,选取甘肃省定西市为研究区,以马铃薯气候适宜度模型为基础,利用1961&mdash;2010年当地气象站的逐日气象数据,重点分析该区域马铃薯的温度、水分及综合气候适宜度的时空变化特征。结果表明,在全球变暖的大背景下,1961&mdash;2010年定西地区马铃薯温度适宜度以 0.012&middot;(10 a) <sup>-1</sup>(P-1</sup>(P

王春乙, 2007. 重大农业气象灾害研究进展[M]. 北京: 气象出版社.

[本文引用: 4]

王润元, 邓振镛, 姚玉璧, , 2015. 旱区名特优作物气候生态适应性与资源利用[M]. 北京: 气象出版社.

[本文引用: 4]

吴爱民, 2011.

国际社会如何应对干旱灾害

[J]. 资源导刊, (3): 46-47.

[本文引用: 1]

吴杰峰, 陈兴伟, 高路, 2017.

水文干旱对气象干旱的响应及其临界条件

[J]. 灾害学, 32(1) : 199-204.

[本文引用: 1]

肖国举, 李裕, 2012. 中国西北地区粮食与食品安全对气候变化的响应研究[M]. 北京: 气象出版社.

[本文引用: 9]

熊友才, 李凤民, 2014. 气候变化下旱区农事技术[M]. 兰州: 兰州大学出版社.

[本文引用: 2]

姚国章, 袁敏, 2010.

干旱预警系统建设的国际经验与借鉴

[J]. 中国应急管理, (3): 43-48.

[本文引用: 3]

姚玉璧, 张强, 李耀辉, , 2013.

干旱灾害风险评估技术及其科学问题与展望

[J]. 资源科学, 35(9): 1 884-1 897.

[本文引用: 6]

应急管理部-教育部减灾与应急管理研究院, 北京师范大学国际安全与应急管理学院, 应急管理部国家减灾中心, , 2022. 2021年全球自然灾害评估报告[R].

[本文引用: 1]

张军, 刘红, 李晓萍, , 2014.

干旱对小麦孕穗期叶片生理特性及产量的影响

[J]. 干旱地区农业研究, 32(3): 1-8.

[本文引用: 1]

张强, 2022.

科学解读“2022年长江流域重大干旱”

[J]. 干旱气象, 40(4): 545-548.

DOI      [本文引用: 3]

今年从6月开始持续到目前的整个长江流域的干旱事件,不仅对农业和能源等各方面影响十分严重,而且干旱发展过程和影响特征还表现出许多与以往不同的独特性,对其进行科学分析十分必要。鉴于此,该文试图在科学与科普同时兼顾的基础上,分别从新常态与反常态两个视角,从干旱的表现特征、形成机制、影响特点及从中得到的启示与思考等方面,对当前还在肆虐的2022年长江流域严重干旱事件进行一些简单的科学解读,以促进社会公众对此次干旱事件的科学认识。

张强, 陈丽华, 王润元, , 2012a.

气候变化与西北地区粮食和食品安全

[J]. 干旱气象, 30(4): 509-513.

[本文引用: 3]

张强, 邓振镛, 赵映东, , 2008.

全球气候变化对我国西北地区农业的影响

[J]. 生态学报, 28(3): 1 210-1 218.

[本文引用: 2]

张强, 韩兰英, 张立阳, , 2014.

论气候变暖背景下干旱和干旱灾害风险特征与管理策略

[J]. 地球科学进展, 29(1): 80-91.

DOI      [本文引用: 8]

干旱是全球影响最广泛的自然灾害, 给人类带来了巨大的危害, 近百年气候显著变暖使干旱灾害及其风险问题更加突出。目前, 对干旱和干旱灾害风险的内在规律理解并不全面, 对气候变暖背景下干旱和干旱灾害风险的表现特征认识也比较模糊。在系统总结国内外已有干旱和干旱灾害风险研究成果的基础上, 归纳了干旱灾害传递过程的基本规律及干旱灾害的本质特征, 综合分析了干旱灾害风险关键要素的主要特点及其相互作用关系, 讨论了气候变暖对干旱和干旱灾害风险的影响特点, 探讨了干旱灾害风险管理的基本要求。在此基础上, 提出了干旱灾害防御的主要措施及干旱灾害风险管理的重点策略。

张强, 王润元, 邓振镛, 2012b. 中国西北干旱气候变化对农业与生态影响及对策[M]. 北京: 气象出版社.

[本文引用: 7]

张强, 姚玉璧, 李耀辉, , 2015.

中国西北地区干旱气象灾害监测预警与减灾技术研究进展及其展望

[J]. 地球科学进展, 30(2): 196-213.

DOI      [本文引用: 2]

干旱灾害是制约中国西北地区社会经济发展、农业生产和生态文明建设的重要自然灾害,而且随着气候变暖西北地区极端干旱事件发生频率和强度均呈增加趋势,影响不断加重。 &#x0201c;中国西北干旱气象灾害监测预警及减灾技术研究&#x0201d;成果是在数十个国家级科研项目的支持下,经过过去20年的理论研究和应用技术开发所取得的一系列创新性成果。该成果对西北干旱形成机理及重大干旱事件发生、发展的规律取得了新认识,尤其是发现了形成西北干旱环流模态的4种主要物理途径;研制了西北干旱预测的新指标、干旱监测的新指数及监测农田蒸散的新设备,明显提高了干旱监测准确性和针对性;提出了山地云物理气象学新理论,研发了水源涵养型国家重点生态功能区&#x02014;&#x02014;祁连山空中云水资源开发利用技术;发现了干旱半干旱区陆面水分输送和循环的新规律,揭示了绿洲自我维持的物理机制;认识了干旱气候变化对农业生态系统影响的新特征,建立了旱作农业对干旱灾害的响应关系;开发了旱区覆膜保墒、集雨补灌、垄沟栽培、适[JP2]宜播期等应对气候变化的减灾技术,为西北实施种植制度、农业布局及结构调整和农业气候资源高效利用提供了科学方案。该成果的完成提升了中国干旱防灾减灾技术水平,培养了中国干旱气象科技队伍,推进了西北地区干旱气象业务服务能力,对西北地区社会经济发展、农业现代化和生态文明建设等方面起到了重要的促进作用。在此基础上,展望了西北地区干旱气象科学研究中迫切需要、有可能突破的主要领域。

张强, 姚玉璧, 李耀辉, , 2020.

中国干旱事件成因和变化规律的研究进展与展望

[J]. 气象学报, 78(3): 500-521.

[本文引用: 1]

张强, 姚玉璧, 王莺, , 2017.

中国南方干旱灾害风险特征及其防控技术对策

[J]. 生态学报, 37(21): 7 206-7 218.

[本文引用: 4]

张晓煜, 杨晓光, 李茂松, , 2011.

农业干旱预警研究现状及发展趋势

[J]. 干旱区资源与环境, 25(11): 18-22.

[本文引用: 2]

张玉书, 米娜, 陈鹏狮, , 2012.

土壤水分胁迫对玉米生长发育的影响研究进展

[J]. 中国农学通报, 28(3): 1-7.

[本文引用: 2]

赵鸿, 李凤民, 熊友才, , 2008.

土壤干旱对作物生长过程和产量影响的研究进展

[J]. 干旱气象, 26(3): 67-71.

[本文引用: 4]

赵鸿, 任丽雯, 赵福年, , 2018.

马铃薯对土壤水分胁迫响应的研究进展

[J]. 干旱气象, 36(4): 537-543.

DOI      [本文引用: 2]

干旱是马铃薯生产的主要限制因子。本文综述了近年来马铃薯生长发育、生理生态特征、产量形成等对水分亏缺响应的研究进展。干旱胁迫可引起播种后的种薯延迟或者不能发芽,出苗后的植株生长缓慢、叶片光合能力降低,最终导致块茎产量和收获指数下降。同时,随着水分胁迫时间的延长和胁迫强度的增加,干旱的抑制作用也逐渐增大。马铃薯叶片扩张速率的土壤有效水(PAW)为0.73(低敏感性品种)~1.00(高敏感性品种),植株相对生长速率、光合速率、蒸腾速率的PAW阈值分别为0.87、0.60、0.60。目前马铃薯生产中基于土壤和植株两个方面监测作物水分状况的监测指标和要素包括基于土壤的土壤水分、潜在蒸发、蒸发皿蒸发等以及基于植物的气孔导度、复水后的光合恢复、叶片/茎秆水势、叶绿素、叶片扩张、叶片相对含水量、作物水分胁迫指数、冠层温度等。在此基础上,提出了未来干旱对马铃薯生产影响研究中应着重加强的关键科学问题,为防旱减灾奠定一定的理论基础。

赵鸿, 王润元, 尚艳, , 2016.

粮食作物对高温干旱胁迫的响应及其阈值研究进展与展望

[J]. 干旱气象, 34(1): 1-12.

DOI      [本文引用: 6]

以大气温度升高和降水波动为主要标志的气候变暖对农业生产产生了重要影响,农作物生长发育、形态建成、生理生化过程等对气温、水分变化的响应特征、机理与后果等的研究,对揭示气候变化对农作物的影响及其机制具有重要作用,是制定适应对策的重要前提之一。本文分别回顾了国内外水稻、小麦、玉米等主要粮食作物生长、发育、生理生态因子、产量、水分利用效率等对高温、水分亏缺的反应以及对二者的协同响应,评述了高温和干旱缺水影响过程中作物的阈值反应及其临界值,讨论了当前高温干旱对作物影响研究中存在的问题。在此基础上,提出了今后应着重加强研究的关键科学问题:(1)干旱/湿润条件下的温度、水分阈值,以及多因子协同胁迫下作物的忍耐极限;(2)胁迫程度、时期、历时与作物自身生理生化过程的关系,以及细胞和分子水平上的响应机制;(3)作物对适度干旱的补偿效应在高温下是被削减还是增加,需要进一步研究和探索。

周广胜, 何奇瑾, 汲玉河, 2016.

适应气候变化的国际行动和农业措施研究进展

[J]. 应用气象学报, 27( 5) : 527-533.

[本文引用: 5]

朱增勇, 聂凤英, 2009.

美国的干旱危机处理

[J]. 世界农业, 362(6): 17-19.

[本文引用: 1]

AKRAM M, 2011.

Growth and yield components of wheat under water stress of different growth stages

[J]. Bangladesh Journal of Agricultural Research, 36(3): 455-468.

DOI      URL     [本文引用: 4]

A field experiment was conducted to determine the sensitivity of wheat to water stress and changes in water relations and yield of wheat (Triticum aestivum L.) under water stress conditions applied at different growth stages. The experiment comprised of two wheat cultivars and four water stress treatments, maintained by withholding water at tillering, anthesis, and at both stages. Water stress caused reduction in leaf relative water contents, water potential, osmotic potential, turgor potential, growth and yield components of both the wheat cultivars. The results indicated that high value of relative water contents were associated with increased yield and yield components. Consecutive stresses at both growth stages caused severe reduction in yield and yield components in both cultivars of wheat. Keywords: Water stress; water relations; growth; Triticum aestivum; yield components. DOI: http://dx.doi.org/10.3329/bjar.v36i3.9264 BJAR 2011; 36(3): 455-468

AMBAVARAM M M R, BASU S, KRISHNAN A, et al, 2014.

Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress

[J]. Nature Communications, 5, 5302. DOI:10.1038/ncomms6302.

DOI      PMID      [本文引用: 1]

Plants capture solar energy and atmospheric carbon dioxide (CO2) through photosynthesis, which is the primary component of crop yield, and needs to be increased considerably to meet the growing global demand for food. Environmental stresses, which are increasing with climate change, adversely affect photosynthetic carbon metabolism (PCM) and limit yield of cereals such as rice (Oryza sativa) that feeds half the world. To study the regulation of photosynthesis, we developed a rice gene regulatory network and identified a transcription factor HYR (HIGHER YIELD RICE) associated with PCM, which on expression in rice enhances photosynthesis under multiple environmental conditions, determining a morpho-physiological programme leading to higher grain yield under normal, drought and high-temperature stress conditions. We show HYR is a master regulator, directly activating photosynthesis genes, cascades of transcription factors and other downstream genes involved in PCM and yield stability under drought and high-temperature environmental stress conditions.

American Meteorological Society, 1997.

Meteorological drought-policy statement

[J]. Bulletin of the American Meteorological Society, 78: 847-849.

DOI      URL     [本文引用: 1]

ANDERSON M C, HAIN C, WARDLOW B, et al, 2011.

Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the Continental United States

[J]. Journal of Climate, 24(8): 2 025-2 044.

DOI      URL     [本文引用: 1]

The reliability of standard meteorological drought indices based on measurements of precipitation is limited by the spatial distribution and quality of currently available rainfall data. Furthermore, they reflect only one component of the surface hydrologic cycle, and they cannot readily capture nonprecipitation-based moisture inputs to the land surface system (e.g., irrigation) that may temper drought impacts or variable rates of water consumption across a landscape. This study assesses the value of a new drought index based on remote sensing of evapotranspiration (ET). The evaporative stress index (ESI) quantifies anomalies in the ratio of actual to potential ET (PET), mapped using thermal band imagery from geostationary satellites. The study investigates the behavior and response time scales of the ESI through a retrospective comparison with the standardized precipitation indices and Palmer drought index suite, and with drought classifications recorded in the U.S. Drought Monitor for the 2000–09 growing seasons. Spatial and temporal correlation analyses suggest that the ESI performs similarly to short-term (up to 6 months) precipitation-based indices but can be produced at higher spatial resolution and without requiring any precipitation data. Unique behavior is observed in the ESI in regions where the evaporative flux is enhanced by moisture sources decoupled from local rainfall: for example, in areas of intense irrigation or shallow water table. Normalization by PET serves to isolate the ET signal component responding to soil moisture variability from variations due to the radiation load. This study suggests that the ESI is a useful complement to the current suite of drought indicators, with particular added value in parts of the world where rainfall data are sparse or unreliable.

ANGELOPOULOS K, DICHIO B, XILOYANNIS C, 1996.

Inhibition of photosynthesis in olive trees (Olea europaea L.) during water stress and rewatering

[J]. Journal of Experimental Botany, 47: 1 093-1 100.

DOI      URL     [本文引用: 1]

ARAUS J L, SLAFER G A, REYNOLDS M P, et al, 2002.

Plant breeding and drought in C3 cereals: what should we breed for?

[J]. Annals of Botany, 89(7): 925-940.

DOI      URL     [本文引用: 2]

BAKER N R, 2008.

Chlorophyll fluorescence: a probe of photosynthesis in vivo

[J]. Annual Review of Plant Biology, 59: 89-113.

DOI      PMID      [本文引用: 1]

The use of chlorophyll fluorescence to monitor photosynthetic performance in algae and plants is now widespread. This review examines how fluorescence parameters can be used to evaluate changes in photosystem II (PSII) photochemistry, linear electron flux, and CO(2) assimilation in vivo, and outlines the theoretical bases for the use of specific fluorescence parameters. Although fluorescence parameters can be measured easily, many potential problems may arise when they are applied to predict changes in photosynthetic performance. In particular, consideration is given to problems associated with accurate estimation of the PSII operating efficiency measured by fluorescence and its relationship with the rates of linear electron flux and CO(2) assimilation. The roles of photochemical and nonphotochemical quenching in the determination of changes in PSII operating efficiency are examined. Finally, applications of fluorescence imaging to studies of photosynthetic heterogeneity and the rapid screening of large numbers of plants for perturbations in photosynthesis and associated metabolism are considered.

BANDI V, SHANKER A K, SHANKER C, et al, 2012. Crop Stress and its Management: Perspectives and Strategies[M]. Netherlands: Springer.

[本文引用: 1]

BATTAGLIA M, SOLÓRZANO R M, HERNÁNDEZ M, et al, 2007.

Proline-rich cell wall proteins accumulate in growing regions and phloem tissue in response to water deficit in common bean seedlings

[J]. Planta, 225: 1 121-1 133.

DOI      URL     [本文引用: 3]

BOGUSZEWSKA-MANKOWSKA D, PIECZYNSKI M, WYRZ- YKOWSKA A, et al, 2018.

Divergent strategies displayed by potato (Solanum tuberosum L.) cultivars to cope with soil drought

[J]. Journal of Agronomy and Crop Science, 204(1):13-30.

DOI      URL     [本文引用: 2]

BOYER J S, 1976.

Photosynthesis at low water potentials

[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 273: 501-512.

[本文引用: 1]

BOYER J S, WESTGATE M E, 2004.

Grain yields with limited water

[J]. Journal of Experimental Botany, 55(407): 2 385-2 394.

DOI      URL     [本文引用: 3]

CHAVES M M, MAROCO J P, PEREIRA J S, 2003.

Understanding plant responses to drought-from genes to the whole plant

[J]. Functional Plant Biology, 30(3): 239-264.

DOI      URL     [本文引用: 3]

In the last decade, our understanding of the processes underlying plant response to drought, at the molecular and whole-plant levels, has rapidly progressed. Here, we review that progress. We draw attention to the perception and signalling processes (chemical and hydraulic) of water deficits. Knowledge of these processes is essential for a holistic understanding of plant resistance to stress, which is needed to improve crop management and breeding techniques. Hundreds of genes that are induced under drought have been identified. A range of tools, from gene expression patterns to the use of transgenic plants, is being used to study the specific function of these genes and their role in plant acclimation or adaptation to water deficit. However, because plant responses to stress are complex, the functions of many of the genes are still unknown. Many of the traits that explain plant adaptation to drought — such as phenology, root size and depth, hydraulic conductivity and the storage of reserves — are those associated with plant development and structure, and are constitutive rather than stress induced. But a large part of plant resistance to drought is the ability to get rid of excess radiation, a concomitant stress under natural conditions. The nature of the mechanisms responsible for leaf photoprotection, especially those related to thermal dissipation, and oxidative stress are being actively researched. The new tools that operate at molecular, plant and ecosystem levels are revolutionising our understanding of plant response to drought, and our ability to monitor it. Techniques such as genome-wide tools, proteomics, stable isotopes and thermal or fluorescence imaging may allow the genotype–phenotype gap to be bridged, which is essential for faster progress in stress biology research.

COLLINS K, HANNAFORD J, SVOBODA M, et al, 2016.

Stakeholder coinquiries on drought impacts, monitoring and early warning systems

[J]. Bulletin of the American Meteorological Society, 97: ES217-ES220.

DOI      URL     [本文引用: 1]

COOK E R, SEAGER R, CANE M A, et al, 2007.

North American drought: reconstructions, causes, and consequences

[J]. Earth-Science Reviews, 81: 93-134.

DOI      URL     [本文引用: 1]

CORNIC G, PRIOUL J L, LOUASON G, 1983.

Stomatal and non-stomatal contribution in the decline in leaf net CO2 uptake during rapid water stress

[J]. Physiologia Plantarum, 58(3): 295-301.

DOI      URL     [本文引用: 1]

COSTA L D, VEDOVE G D, GIANQUINTO G, et al, 1997.

Yield, water use efficiency and nitrogen uptake in potato: influence of drought stress

[J]. Potato Research, 40(1): 19-34.

DOI      URL     [本文引用: 1]

DAI A, TRENBERTH K E, QIAN T, 2004.

A global dataset of Palmer drought severity index for 1870-2002: relationship with soil moisture and effects of surface warming

[J]. Journal of Hydrometeorology, 5(6): 1 117-1 130.

DOI      URL     [本文引用: 2]

A monthly dataset of Palmer Drought Severity Index (PDSI) from 1870 to 2002 is derived using historical precipitation and temperature data for global land areas on a 2.5° grid. Over Illinois, Mongolia, and parts of China and the former Soviet Union, where soil moisture data are available, the PDSI is significantly correlated (r = 0.5 to 0.7) with observed soil moisture content within the top 1-m depth during warm-season months. The strongest correlation is in late summer and autumn, and the weakest correlation is in spring, when snowmelt plays an important role. Basin-averaged annual PDSI covary closely (r = 0.6 to 0.8) with streamflow for seven of world's largest rivers and several smaller rivers examined. The results suggest that the PDSI is a good proxy of both surface moisture conditions and streamflow. An empirical orthogonal function (EOF) analysis of the PDSI reveals a fairly linear trend resulting from trends in precipitation and surface temperature and an El Niño– Southern Oscillation (ENSO)-induced mode of mostly interannual variations as the two leading patterns. The global very dry areas, defined as PDSI &amp;lt; −3.0, have more than doubled since the 1970s, with a large jump in the early 1980s due to an ENSO-induced precipitation decrease and a subsequent expansion primarily due to surface warming, while global very wet areas (PDSI &amp;gt; +3.0) declined slightly during the 1980s. Together, the global land areas in either very dry or very wet conditions have increased from ∼20% to 38% since 1972, with surface warming as the primary cause after the mid-1980s. These results provide observational evidence for the increasing risk of droughts as anthropogenic global warming progresses and produces both increased temperatures and increased drying.

DAVIES W J, ZHANG J H, 1991.

Root signals and the regulation of growth and development of plants in drying soil

[J]. Annual Review Plant Physiology and Plant Molecular Biology, 42: 55-76.

DOI      URL     [本文引用: 2]

EI HAFID R, SMITH D H, KARROU M, et al, 1998.

Physiological responses of spring durum wheat cultivars to early-season drought in a Mediterranean environment

[J]. Annals of Botany, 81(2): 363-370.

DOI      URL     [本文引用: 1]

FAO Food and Agriculture Organization of the United Nations, 2006.

The state of food insecurity in the world: eradicating world hunger—taking stock ten years after the World Food Summit

[R]. FAO, Rome, Italy.

[本文引用: 1]

FAO Food and Agriculture Organization of the United Nations, 2018.

The impact of disasters and crises on agriculture and food security

[R]. FAO, Rome, Italy.

[本文引用: 1]

FAROOQ M, WAHID A, KOBAYASHI N, et al, 2009.

Plant drought stress: effects, mechanisms and management

[J]. Sustainable Agriculture, 29: 153-188.

[本文引用: 6]

FU X, SVOBODA M, TANG Z, et al, 2013.

An overview of US state drought plans: crisis or risk management?

[J]. Natural Hazards. 69(3):1607-1 627.

DOI      URL     [本文引用: 3]

GAMBETTA G A, HERRERA J C, DAYER S, et al, 2020.

The physiology of drought stress in grapevine: towards an integrative definition of drought tolerance

[J]. Journal of Experimental Botany, 71(16):4658-4 676.

DOI      PMID      [本文引用: 1]

Water availability is arguably the most important environmental factor limiting crop growth and productivity. Erratic precipitation patterns and increased temperatures resulting from climate change will likely make drought events more frequent in many regions, increasing the demand on freshwater resources and creating major challenges for agriculture. Addressing these challenges through increased irrigation is not always a sustainable solution so there is a growing need to identify and/or breed drought-tolerant crop varieties in order to maintain sustainability in the context of climate change. Grapevine (Vitis vinifera), a major fruit crop of economic importance, has emerged as a model perennial fruit crop for the study of drought tolerance. This review synthesizes the most recent results on grapevine drought responses, the impact of water deficit on fruit yield and composition, and the identification of drought-tolerant varieties. Given the existing gaps in our knowledge of the mechanisms underlying grapevine drought responses, we aim to answer the following question: how can we move towards a more integrative definition of grapevine drought tolerance?© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology.

GENTY B, BRIANTAIS J M,

DA SILVA J B, 1987. Effects of drought on primary photosynthetic processes of cotton leaves

[J]. Plant Physiology, 83(2): 360-364.

DOI      URL     [本文引用: 1]

GLEICK P H, 2000. The World’s Water 2000-2001: The Biennial Report on Freshwater Resources[M]. Washington D C: Island Press.

[本文引用: 1]

GUPTA A, RICO-MEDINA A, CAÑO-DELGADO A I, 2020.

The physiology of plant responses to drought

[J]. Science, 368: 266-269.

DOI      PMID      [本文引用: 17]

Drought alone causes more annual loss in crop yield than all pathogens combined. To adapt to moisture gradients in soil, plants alter their physiology, modify root growth and architecture, and close stomata on their aboveground segments. These tissue-specific responses modify the flux of cellular signals, resulting in early flowering or stunted growth and, often, reduced yield. Physiological and molecular analyses of the model plant have identified phytohormone signaling as key for regulating the response to drought or water insufficiency. Here we discuss how engineering hormone signaling in specific cells and cellular domains can facilitate improved plant responses to drought. We explore current knowledge and future questions central to the quest to produce high-yield, drought-resistant crops.Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

HEFFERNAN O, 2013.

The dry facts

[J]. Nature, 501(7468):S2-S3.

DOI      [本文引用: 1]

HERVÁS-GÁMEZ C, DELGADO-RAMOS F, 2020.

Are the modern drought management plans modern enough?The Guadalquivir River basin case in Spain

[J]. Water, 12, 49. DOI:10.3390/W12010049.

DOI      URL     [本文引用: 2]

Droughts and water scarcity events are predicted to be more frequent and intense in the future, especially in Mediterranean countries. However, are the most recent drought management plans (DMPs) built on the latest technical, engineering, and scientific knowledge, as well as the learning experiences from managing historical droughts? The most significant challenge that surfaces, when a new drought event strikes, is the difficulty in predicting its duration (which can vary from months to years), the severity (or degree of affection to water resources), and the potential environmental, economic, and social impacts. Hence, there is an importance of integrating reliable forecasting and modeling tools in the development of modern DMPs, so the potential risk can be assessed under a range of possible drought scenarios. This will ensure that the proposed measures and actions of the DMP are sufficiently robust and proportionate to the drought and water scarcity situation. This paper provides a critical assessment of the core technical concepts and principles to be taken into consideration when developing the methodological and operational framework of a DMP. The case of study chosen is the Guadalquivir River Basin in southern Spain, which presents one of the most complex and paradigmatic cases in this regard. This region suffers recurrent episodes of drought and water scarcity, together with fierce competition among water users. Recently, a new strategic DMP has been approved and adopted in December 2018. The implications of applying the DMP in practice during the drought have been also evaluated. This study draws important lessons learned that could be applied in other areas suffering from water scarcity and droughts.

HIRT H, SHINOZAKI K, 2004.

Plant Responses to Abiotic Stress

[M]. Berlin and Heidelberg, Germany: Springer-Verlag.

[本文引用: 1]

HIRUT B, SHIMELIS H, FENTAHUN M, et al, 2017.

Combining ability of highland tropic adapted potato for tuber yield and yield components under drought

[J]. Public Library of Science ONE, 12(7), e0181541. DOI:10.1371/journal.pone.0181541.

DOI      [本文引用: 1]

HOLLINGER S E, ISARD S A, WELFORD M R, 1993.

A new soil moisture drought index for predicting crop yields

[C]// Preprints, Eighth Conference on Applied Climatology, Anaheim, CA, American Meteorology Society: 187-190.

[本文引用: 2]

HOSSAIN A, TEIXEIRA DA SILVA J A, LOZOVSKAYA M V, et al, 2012.

The effect of high temperature stress on the phenology, growth and yield of five wheat (Triticum aestivum L.) genotypes

[J]. The Asian and Australasian Journal of Plant Science and Biotechnology, 6(1): 14-23.

[本文引用: 2]

HUANG J, YU H, GUAN X, et al, 2016.

Accelerated dryland expansion under climate change

[J]. Nature Climate Change, 6(2): 166-172.

DOI      [本文引用: 2]

Drylands are home to more than 38% of the total global population and are one of the most sensitive areas to climate change and human activities(1,2). Projecting the areal change in drylands is essential for taking early action to prevent the aggravation of global desertification(3,4). However, dryland expansion has been underestimated in the Fifth Coupled Model Intercomparison Project (CMIP5) simulations(5) considering the past 58 years (1948-2005). Here, using historical data to bias-correct CMIP5 projections, we show an increase in dryland expansion rate resulting in the drylands covering half of the global land surface by the end of this century. Dryland area, projected under representative concentration pathways (RCPs) RCP8.5 and RCP4.5, will increase by 23% and 11%, respectively, relative to 1961-1990 baseline, equalling 56% and 50%, respectively, of total land surface. Such an expansion of drylands would lead to reduced carbon sequestration and enhanced regional warming(6,7), resulting in warming trends over the present drylands that are double those over humid regions. The increasing aridity, enhanced warming and rapidly growing human population will exacerbate the risk of land degradation and desertification in the near future in the drylands of developing countries, where 78% of dryland expansion and 50% of the population growth will occur under RCP8.5.

IPCC, 2007. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press:211-272.

[本文引用: 2]

IPCC, 2022.

Climate Change 2022: Impacts, Adaptation and Vulnerability

[R/OL]. [2023-04-02]. https://www.ipcc.ch/report/ar6/wg2/.

URL     [本文引用: 4]

JEFFERIES R A, 1993.

Responses of potato genotypes to drought. I. Expansion of individual leaves and osmotic adjustment

[J]. Annals of Applied Biology, 122(1): 93-104.

DOI      URL     [本文引用: 2]

JONES H G, CORLETT J E, 1992.

Current topics in drought physiology

[J]. Journal of Agricultural Science, 119(3), 291-296.

[本文引用: 1]

KOBATA T, PALTA J A, TURNER N C, 1992.

Rate of development of postanthesis water deficits and grain filling of spring wheat

[J]. Crop Science, 32(5): 1 238-1 242.

DOI      URL     [本文引用: 1]

KONCAGÜL E, TRAN M, CONNOR R, et al, 2020. Water and climate change. UNESCO & WWAP. World water development report 2020[R].

[本文引用: 1]

LESK C, ROWHANI P, RAMANKUTY N, 2016.

Influence of extreme weather disasters on global crop production

[J]. Nature, 529(7584): 84-87.

DOI      [本文引用: 2]

LI Y, GU W, CUI W, et al, 2015.

Exploration of copula function use in crop meteorological drought risk analysis: a case study of winter wheat in Beijing, China

[J]. Natural Hazards, 77:1289-1 303.

DOI      URL     [本文引用: 2]

LOYLA RODRÍGUEZ P, DANNY S C, CARLOS EDUADO N L, et al, 2016.

Growth and phenology of three Andean potato varieties (Solanum tuberosum L.) under water stress

[J]. Agronomía Colombiana, 34: 141-154.

DOI      URL     [本文引用: 1]

The water-deficit stress has a negative effect on the growth and development of plants, reducing the yield of crops. This study evaluated the effect of a water deficit on the growth and phenology of potato (Solanum tuberosum L.) varieties Diacol Capiro, Pastusa Suprema and Esmeralda. Plants that were starting tuberization were subjected to a water deficit by suspension of irrigation until reaching a foliar water potential of -2.0 MPa; later the plants were re-irrigated and recovered. The water deficit decreased the flowering time in 'Diacol Capiro', the development of leaves and maturation of fruits in 'Esmeralda' and the development of leaves and formation of lateral shoots in 'Pastusa Suprema'. In the three varieties, the water deficit did not induce a significant reduction in the stem length, the number of leaves per stem and per site or the number of main stems per site. The plants demonstrated responses related to escape and evasion mechanisms during the water deficit through the adjustment of the metabolism in order to reduce the duration of the phenological stages. The duration of the biological cycle for the three varieties was 148 days, with a requirement of 1,850 GDD. There were no differences in the potential yield, probably due to the short duration of the stress period. The three varieties demonstrated plasticity when modifying the phenology in response to the drought period.

MACHADO S, PAULSEN G M, 2001.

Combined effects of drought and high temperature on water relations of wheat and sorghum

[J]. Plant and Soil, 233(2): 179-187.

DOI      URL     [本文引用: 2]

MACKERRON D K L, JEFFERIES R A, 1986.

The influence of early soil moisture stress on tuber numbers in potato

[J]. Potato Research, 29: 299-312.

DOI      URL     [本文引用: 1]

MAFAKHERI A, SIOSEMARDEH A, BAHRAMNEJAD B, et al, 2010.

Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars

[J]. Australian Journal of Crop Science, 4(8): 580-585.

[本文引用: 1]

MANE S P, ROBINET C V, ULANOV A, et al, 2008.

Molecular and physiological adaptation to prolonged drought stress in the leaves of two Andean potato genotypes

[J]. Functional Plant Biology, 35(8): 669-688.

DOI      PMID      [本文引用: 1]

Responses to prolonged drought and recovery from drought of two South American potato (Solanum tuberosum L. ssp. andigena (Juz & Buk) Hawkes) landraces, Sullu and Ccompis were compared under field conditions. Physiological and biomass measurements, yield analysis, the results of hybridisation to a potato microarray platform (44 000 probes) and metabolite profiling were used to characterise responses to water deficit. Drought affected shoot and root biomass negatively in Ccompis but not in Sullu, whereas both genotypes maintained tuber yield under water stress. Ccompis showed stronger reduction in maximum quantum yield under stress than Sullu, and less decrease in stomatal resistance. Genes associated with PSII functions were activated during recovery in Sullu only. Evidence for sucrose accumulation in Sullu only during maximum stress and recovery was observed, in addition to increases in cell wall biosynthesis. A depression in the abundance of plastid superoxide dismutase transcripts was observed under maximum stress in Ccompis. Both sucrose and the regulatory molecule trehalose accumulated in the leaves of Sullu only. In contrast, in Ccompis, the raffinose oligosaccharide family pathway was activated, whereas low levels of sucrose and minor stress-mediated changes in trehalose were observed. Proline, and expression of the associated genes, rose in both genotypes under drought, with a 3-fold higher increase in Sullu than in Ccompis. The results demonstrate the presence of distinct molecular and biochemical drought responses in the two potato landraces leading to yield maintenance but differential biomass accumulation in vegetative tissues.

MCWILLIAM J R, 1986.

The national and international importance of drought and salinity effects on agricultural production

[J]. Australian Journal Plant Physiology, 13(1): 1-13.

[本文引用: 2]

MEDRANO H, ESCALONA J M, BOTA J, et al, 2002.

Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter

[J]. Annals of Botany, 89(7): 895-905.

DOI      URL     [本文引用: 2]

METZ B, DAVIDSON O, BOSCH P, et al, 2007. Climate change 2007: mitigation of climate change[M]. Cambridge: Cambridge University Press.

[本文引用: 2]

MIRZABAEV A, BEZNER KERR R, HASEGAWA T, et al, 2023.

Severe climate change risks to food security and nutrition

[J]. Climate Risk Management, 39, 100473. DOI:10.1016/j.crm.2022.100473.

DOI      URL     [本文引用: 4]

MORGAN J M. 1984.

Osmoregulation and water stress in higher plants

[J]. Annual Review of Plant Physiology, 35: 299-319.

DOI      URL     [本文引用: 1]

MORGAN P W, 1991.

Effects of abiotic stresses on plant hormone systems

[J]. Plant Biology, 12: 113-146.

[本文引用: 2]

NICOLAS M E, LAMBERS H, SIMPSON R J, et al, 1985.

Effect of drought on metabolism and partitioning of carbon in two wheat varieties differing in drought-tolerance

[J]. Annals of Botany, 55(5): 727-742.

DOI      URL     [本文引用: 1]

OBIDIEGWU J E, BRYAN G B, JONES H G, et al, 2015.

Coping with drought: stress and adaptive responses in potato and perspectives for improvement

[J]. Frontiers in Plant Science, 6, 542. DOI:10.3389/fpls.2015.00542.

DOI      PMID      [本文引用: 6]

Potato (Solanum tuberosum L.) is often considered as a drought sensitive crop and its sustainable production is threatened due to frequent drought episodes. There has been much research aiming to understand the physiological, biochemical, and genetic basis of drought tolerance in potato as a basis for improving production under drought conditions. The complex phenotypic response of potato plants to drought is conditioned by the interactive effects of the plant's genotypic potential, developmental stage, and environment. Effective crop improvement for drought tolerance will require the pyramiding of many disparate characters, with different combinations being appropriate for different growing environments. An understanding of the interaction between below ground water uptake by the roots and above ground water loss from the shoot system is essential. The development of high throughput precision phenotyping platforms is providing an exciting new tool for precision screening, which, with the incorporation of innovative screening strategies, can aid the selection and pyramiding of drought-related genes appropriate for specific environments. Outcomes from genomics, proteomics, metabolomics, and bioengineering advances will undoubtedly compliment conventional breeding strategies and presents an alternative route toward development of drought tolerant potatoes. This review presents an overview of past research activity, highlighting recent advances with examples from other crops and suggesting future research directions.

PALMER W C, 1968.

Keeping track of crop moisture conditions, nationwide: the new crop moisture index

[J]. Weatherwise, 21(4): 156-161.

DOI      URL     [本文引用: 2]

PETERS-LIDARD C D, MOCKO D M, SU L, et al, 2021.

Advances in Land surface models and indicators for drought monitoring and prediction

[J]. Bulletin of the American Meteorological Society, 102: E1 099-E1 122.

DOI      URL     [本文引用: 1]

Millions of people across the globe are affected by droughts every year, and recent droughts have highlighted the considerable agricultural impacts and economic costs of these events. Monitoring the state of droughts depends on integrating multiple indicators that each capture particular aspects of hydrologic impact and various types and phases of drought. As the capabilities of land surface models and remote sensing have improved, important physical processes such as dynamic, interactive vegetation phenology, groundwater, and snowpack evolution now support a range of drought indicators that better reflect coupled water, energy, and carbon cycle processes. In this work, we discuss these advances, including newer classes of indicators that can be applied to improve the characterization of drought onset, severity, and duration. We utilize a new model-based drought reconstruction to illustrate the role of dynamic phenology and groundwater in drought assessment. Further, through case studies on flash droughts, snow droughts, and drought recovery, we illustrate the potential advantages of advanced model physics and observational capabilities, especially from remote sensing, in characterizing droughts.

PINHEIRO C, CHAVES M M, 2011.

Photosynthesis and drought: can we make metabolic connections from available data?

[J]. Journal of Experimental Botany, 62(3): 869-882.

DOI      PMID      [本文引用: 2]

Photosynthesis is one of the key processes to be affected by water deficits, via decreased CO2 diffusion to the chloroplast and metabolic constraints. The relative impact of those limitations varies with the intensity of the stress, the occurrence (or not) of superimposed stresses, and the species we are dealing with. Total plant carbon uptake is further reduced due to the concomitant or even earlier inhibition of growth. Leaf carbohydrate status, altered directly by water deficits or indirectly (via decreased growth), acts as a metabolic signal although its role is not totally clear. Other relevant signals acting under water deficits comprise: abscisic acid (ABA), with an impact on stomatal aperture and the regulation at the transcription level of a large number of genes related to plant stress response; other hormones that act either concurrently (brassinosteroids, jasmonates, and salycilic acid) or antagonistically (auxin, cytokinin, or ethylene) with ABA; and redox control of the energy balance of photosynthetic cells deprived of CO2 by stomatal closure. In an attempt to systematize current knowledge on the complex network of interactions and regulation of photosynthesis in plants subjected to water deficits, a meta-analysis has been performed covering >450 papers published in the last 15 years. This analysis shows the interplay of sugars, reactive oxygen species (ROS), and hormones with photosynthetic responses to drought, involving many metabolic events. However, more significantly it highlights (i) how fragmented and often non-comparable the results are and (ii) how hard it is to relate molecular events to plant physiological status, namely photosynthetic activity, and to stress intensity. Indeed, the same data set usually does not integrate these different levels of analysis. Considering these limitations, it was hard to find a general trend, particularly concerning molecular responses to drought, with the exception of the genes ABI1 and ABI3. These genes, irrespective of the stress type (acute versus chronic) and intensity, show a similar response to water shortage in the two plant systems analysed (Arabidopsis and barley). Both are associated with ABA-mediated metabolic responses to stress and the regulation of stomatal aperture. Under drought, ABI1 transcription is up-regulated while ABI3 is usually down-regulated. Recently ABI3 has been hypothesized to be essential for successful drought recovery.

QIANG S C, ZHANG Y, FAN J L, et al, 2019a.

Maize yield, rainwater and nitrogen use efficiency as affected by maize genotypes and nitrogen rates on the Loess Plateau of China

[J]. Agricultural Water Management, 213: 996-1 003.

DOI      URL     [本文引用: 2]

QIANG S C, ZHANG F C, DYCK M C, et al, 2019b.

Determination of critical nitrogen dilution curve based on leaf area index for winter wheat in the Guanzhong Plain, Northwest China

[J]. Journal of Integrative Agriculture, 18(10): 2 369-2 380.

DOI      URL     [本文引用: 1]

QIN J H, BIAN C S, LIU J G, et al, 2019.

An efficient greenhouse method to screen potato genotypes for drought tolerance

[J]. Scientia Horticulturae, 253: 61-69.

DOI      URL     [本文引用: 1]

RAMIREZ D A YACTAYO W, RENS L R, et al, 2016.

Defining biological thresholds associated to plant water status for monitoring water restriction effects: stomatal conductance and photosynthesis recovery as key indicators in potato

[J]. Agricultural Water Management, 177: 369-378.

DOI      URL     [本文引用: 2]

RAMPINO P, PATALEO S, GERERDI C, et al, 2006.

Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes

[J]. Plant, Cell & Environment, 29(12): 2 143-2 152.

[本文引用: 3]

RICARDO A, 2012.

Plant responses to drought stress from morphological to molecular features

[M]. Berlin, Heidelberg: Springer-Verlag.

[本文引用: 4]

SALINGER M J, SIVAKUMAR M V K, MOTHA R, 2005.

Reducing vulnerability of agriculture and forestry to climate variability and change: workshop summary and recommendations

[J]. Climatic Change, 70: 341-362.

DOI      URL     [本文引用: 1]

SERRAJ R, KRISHNAMURTHY L, KASHIWAGI J, et al, 2004.

Variation in root traits of chickpea (Cicer arietinum L.) grown under terminal drought

[J]. Field Crops Research, 88: 115-127.

DOI      URL     [本文引用: 1]

STEINEMANN A, LACOBELLIS S F, CAYAN D R, 2015.

Developing and evaluating drought indicators for decision-making

[J]. Journal of Hydrometeorology, 16(4): 1 793-1 803.

DOI      URL     [本文引用: 1]

Drought indicators can help to detect, assess, and reduce impacts of drought. However, existing indicators often have deficiencies that limit their effectiveness, such as statistical inconsistency, noncomparability, arbitrary metrics, and lack of historic context. Further, indicators selected for drought plans may be only marginally useful, and relatively little prior work has investigated ways to design operationally practical indicators. This study devises a generalizable approach, based on feedback from users, to develop and evaluate indicators for decision-making. This approach employs a percentile-based framework that offers clarity, consistency, and comparability among different indicators, drought levels, time periods, and spatial scales. In addition, it characterizes the evolution of droughts and quantifies their severity, duration, and frequency. User preferences are incorporated into the framework’s parameters, which include percentile thresholds for drought onset and recovery, severity levels, anomalies, and consecutive time periods for triggering. To illustrate the approach and decision-making implications, the framework is applied to California Climate Division 2 and is used with decision-makers, water managers, and other participants in the National Integrated Drought Information System (NIDIS) California Pilot. Stakeholders report that the framework provides an easily understood and beneficial way to assess and communicate drought conditions, validly compare multiple indicators across different locations and time scales, quantify risks relative to historic droughts, and determine indicators that would be valuable for decision-making.

SUPRATIM B, RAMEGOWDA H V, ANUJ K, et al, 2016.

Plant adaptation to drought stress

[J]. F1000 Research, 5, 1554. DOI: 10.12688/f1000research.7678.1.

DOI      URL     [本文引用: 2]

TEZARA W, MITCHELL V J, DRISCOLL S D, et al, 1999.

Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP

[J]. Nature, 401: 914-917.

DOI      URL     [本文引用: 1]

TURNER N C, 1986.

Crop water deficits: a decade of progress

[J]. Advances in Agronomy, 39: 1-51.

[本文引用: 2]

TURNER N C, MOLYNEUX N, YANG S, et al, 2011.

Climate change in south-west Australia and north-west China: challenges and opportunities for crop production

[J]. Crop and Pasture Science, 62(6): 445-456.

DOI      URL     [本文引用: 1]

\n\nPredictions from climate simulation models suggest that by 2050 mean temperatures on the Loess Plateau of China will increase by 2.5 to 3.75°C, while those in the cropping region of south-west Australia will increase by 1.25 to 1.75°C. By 2050, rainfall is not expected to change on the Loess Plateau of China, while in south-west Australia rainfall is predicted to decrease by 20 to 60 mm. The frequency of heat waves and dry spells is predicted to increase in both regions. The implications of rising temperatures are an acceleration of crop phenology and a reduction in crop yields, greater risk of reproductive failure from extreme temperatures, and greater risk of crop failure. The reduction in yield from increased phenological development can be countered by selecting longer-season cultivars and taking advantage of warmer minimum temperatures and reduced frost risk to plant earlier than with current temperatures. Breeding for tolerance of extreme temperatures will be necessary to counter the increased frequency of extreme temperatures, while a greater emphasis on breeding for increased drought resistance and precipitation-use efficiency will lessen the impact of reduced rainfall. Management options likely to be adopted in south-west Australia include the introduction of drought-tolerant perennial fodder species and shifting cropping to higher-rainfall areas. On the Loess Plateau of China, food security is paramount so that an increased area of heat-tolerant and high-yielding maize, mulching with residues and plastic film, better weed and pest control and strategic use of supplemental irrigation to improve rainfall-use efficiency are likely to be adopted.\n

ULRICH D E M, SEVANTO S, RYAN M, et al, 2019.

Plant-microbe interactions before drought influence plant physiological responses to subsequent severe drought

[J]. Scientific Reports, 9, 249. DOI: 10.1038/s41598-018-36971-3.

DOI      PMID      [本文引用: 3]

We examined the effect of soil microbial communities on plant physiological responses to drought. Bouteloua gracilis seeds were planted in sterilized sand with (inoculated) and without (controls) soil microbial communities. After substantial growth, drought was imposed by completely withholding water. Before soil moisture declined to zero, inoculated plants germinated faster, were significantly taller, and maintained greater soil moisture than controls. The greater soil moisture of the inoculated plants allowed greater photosynthesis but also induced lower tissue drought tolerance (as indicated by turgor loss point) compared to controls. The inoculated plants were more susceptible to severe drought compared to control plants as indicated by significantly lower mean stomatal conductance, as well as marginally significantly greater mean wilting score, for the entire severe drought period after soil moisture declined to zero. Inoculated plants exhibited enhanced growth and photosynthesis and dampened drought stress over short timescales, but also increased susceptibility to drought over long timescales. This work demonstrates (1) an unexpected insight that microbes can have positive initial effects on plant performance, but negative impacts on plant performance during severe drought, and (2) that microbially altered effects on plant function during well-watered and moderate drought conditions can influence plant function under subsequent severe drought.

UNCCD United Nations Convention to combat Desertification, 2022. Drought in numbers 2022[R].

[本文引用: 1]

VASQUEZ-ROBINET C, MANE S P, ULANOV A V, et al, 2008.

Physiological and molecular adaptations to drought in Andean potato genotypes

[J]. Journal of Experimental Botany, 59(8): 2 109-2 123.

DOI      URL     [本文引用: 1]

WILHITE D A, 2000. Drought: a global assessment[M]. London & New York: Routledge.

[本文引用: 2]

WILHITE D A, SVOBODA M D, HAYES M J, 2007.

Understanding the complex impacts of drought: a key to enhancing drought mitigation and preparedness

[J]. Water Resource Management, 21: 763-774.

DOI      URL     [本文引用: 1]

WMO and GWP World Meteorological Organization and Global Water Partnership, 2014.

National drought management policy guidelines: a template for action

[M]. WMO, Geneva, Switzerland and GWP, Stockholm, Sweden.

[本文引用: 1]

WMO and GWP World Meteorological Organization and Global Water Partnership, 2017.

Benefits of action and costs of inaction: drought mitigation and preparedness

[M]. WMO, Geneva, Switzerland and GWP, Stockholm, Sweden.

[本文引用: 1]

XU Z, ZHOU G, SHIMIZU H, 2010.

Plant responses to drought and rewatering

[J]. Plant Signaling & Behavior, 5: 649-654.

[本文引用: 1]

ZAKALUK R, RANJAN R S, 2006.

Artificial neural network modeling of leaf water potential for potatoes using RGB digital images: a greenhouse study

[J]. Potato Research, 49: 255-272.

DOI      URL     [本文引用: 2]

ZAREI A R, SHABANI A, MAHMOUDI M R, 2020.

Evaluation of the influence of occurrence time of drought on the annual yield of rain-fed winter wheat using backward multiple generalized estimation equation

[J]. Water Resources Management, 34: 2 911-2 931.

DOI      [本文引用: 1]

ZHANG B, CHEN R, ZHANG Y, 2009.

Comprehensive index for drought evaluation

[J]. Water Resources Protection, 25(1): 5-18.

[本文引用: 2]

ZHAO H, WANG R Y, MA B L, et al, 2014.

Ridge-furrow with full plastic film mulching improves water use efficiency and tuber yields of potato in a semiarid rainfed ecosystem

[J]. Field Crops Research, 161:137-148.

DOI      URL     [本文引用: 2]

ZHAO H, XIONG Y C, LI F M, et al, 2012.

Plastic film mulch for half growing-season maximized WUE and yield of potato via moisture temperature improvement in a semi-arid agroecosystem

[J]. Agricultural Water Management, 104: 68-78.

DOI      URL     [本文引用: 1]

ZHOU J, WANG X, JIAO Y, et al, 2007.

Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle

[J]. Plant Molecular Biology, 63: 591-608.

PMID      [本文引用: 3]

To elucidate genome-level responses to drought and high-salinity stress in rice, a 70 mer oligomer microarray covering 36,926 unique genes or gene models was used to profile genome expression changes in rice shoot, flag leaf and panicle under drought or high-salinity conditions. While patterns of gene expression in response to drought or high-salinity stress within a particular organ type showed significant overlap, comparison of expression profiles among different organs showed largely organ-specific patterns of regulation. Moreover, both stresses appear to alter the expression patterns of a significant number of genes involved in transcription and cell signaling in a largely organ-specific manner. The promoter regions of genes induced by both stresses or induced by one stress in more than one organ types possess relative enrichment of two cis-elements (ABRE core and DRE core) known to be associated with water stress. An initial computational analysis indicated that novel promoter motifs are present in the promoters of genes involved in rehydration after drought. This analysis suggested that rice might possess a mechanism that actively detects rehydration and facilitates rapid recovery. Overall, our data supports a notion that organ-specific gene regulation in response to the two abiotic stresses may primarily be mediated by organ-specific transcription responses.

ZHU X, GONG H, CHEN G, et al, 2005.

Different solute levels in two spring wheat cultivars induced by progressive field water stress at different developmental stages

[J]. Journal of Arid Environments, 62(1): 1-14.

DOI      URL     [本文引用: 4]

ZINSELMEIER C, WESTGATE M E, SCHUSSLER J R, et al, 1995.

Low water potential disrupts carbohydrate metabolism in maize (Zea mays L.) ovaries

[J]. Plant Physiology, 107(2): 385-391.

PMID      [本文引用: 1]

Water deficit during pollination increases the frequency of kernel abortion in maize (Zea mays L.). Much of the kernel loss is attributable to lack of current photosynthate, but a large number of kernels fail to develop on water-deficient plants even when assimilate supply is increased. We examined the possibility that assimilate utilization by developing ovaries might be impaired at low water potential ([Psi]w). Plants were grown in the greenhouse in 20-L pots containing 22 kg of amended soil. Water was withheld on the first day silks emerged, and plants were hand-pollinated 4 d later when leaf [Psi]w decreased to approximately - 1.8 MPa and silk [Psi]w was approximately -1.0 MPa. Plants were rehydrated 2 d after pollination. The brief water deficit inhibited ovary growth (dry matter accumulation) and decreased kernel number per ear by 60%, compared to controls. Inhibition of ovary growth was associated with a decrease in the level of reducing sugars, depletion of starch, a 75-fold increase in sucrose concentration (dry weight basis), and inhibition of acid invertase (EC 3.2.1.26) activity. These results indicate that water deficits during pollination disrupt carbohydrate metabolism in maize ovaries. They suggest that acid invertase activity is important for establishing and maintaining reproductive sink strength during pollination and early kernel development.

/