Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Verification and assessment of precipitation forecast based on global and regional numerical models in Gansu in flood season of 2020
CHEN Xiaoyan, KONG Xiangwei, PENG Xiao, LIU Xinwei, WU Jing, REN Shuyuan
Journal of Arid Meteorology    2022, 40 (3): 524-535.   DOI: 10.11755/j.issn.1006-7639(2022)-03-0524
Abstract636)   HTML24)    PDF(pc) (4247KB)(2323)       Save

In the flood season (from June to August) of 2020, Gansu Province experienced intensive precipitation with long duration and wide ranges. The performances of three global models (ECMWF, GRAPES_GFS and NCEP_GFS) and four regional models (GRAPES_3 km, GRAPES_LZ10 km, GRAPES_LZ3 km and regional model SMS-WARMS in East China) for 24-hour accumulated precipitation forecast were evaluated in this paper. The main results are as follows: (1) The ECMWF model surpassed the other two global models in forecast performance, while among regional models, the GRAPES_3 km and the SMS-WARMS were better, and the latter was more stable. (2) The regional models had lower accuracy of rain probability forecast and TS, ETS, POD than those of global models for light and moderate rain, but for rainstorms they outperformed global models; the POD and Bias of regional models for heavy rain and rainstorms were significantly higher than those of global models. (3) According to the differences of 500 hPa circulation pattern, the precipitation in Gansu could be divided into two types including subtropical high marginal type and low trough type. Four subtropical high marginal precipitation processes and three low trough precipitation processes in flood season of 2020 were tested and evaluated. For global models and regional models, they all had better capability in predicting precipitation with different magnitudes for the former type than the latter one. The ECMWF model and regional models were better than the NCEP_GFS model and the GRAPES_GFS model in predicting heavy rain and rainstorm. Among global models, the ECMWF model had the best forecast effect for the two precipitation types, and the East China regional model had the best forecast effect for the two precipitation types among regional models. (4) All the seven models had good forecasting capability for the spatial orientation of moderate and heavy rain for both rainfall types, while the forecast effect of rainfall location for subtropical high marginal type was better than that of low-trough type, but the predicted precipitation intensity was stronger than observations, especially for the center of precipitation.

Table and Figures | Reference | Related Articles | Metrics