In August 2017, there were torrential rains in Longnan, Gansu Province. The 24-hour precipitation at the Li County and Wudu weather stations broke through the historical extreme values, with obvious extremes and localities. Based on ERA5 reanalysis data of the European Centre for Medium-Range Weather Forecasts, radar data and ground observation data, a comparative analysis of two heavy rain cases that occurred in Longnan, Gansu Province from 6 to 7 and from 19 to 20 August 2017 are carried out. The circulation background and the radar reflectivity factor, radial velocity and physical quantity characteristics of the heavy rainfall processes of the two cases are discussed emphatically. The results show that the two rainstorms all occurred at the intersection between the northerly airflow in the westerly trough and the southerly warm and humid airflow in the middle-lower layer, but the main impact systems and triggering conditions are different. The radar echo shows from August 6 to 7, the convective system caused by the cold shear line is stronger, with higher reflectivity factor, lower central height, higher precipitation rate and shorter duration. The reflectivity factor of precipitation in warm region from August 19 to 20 is lower, and its central height is higher, and the precipitation rate is smaller, and the precipitation process maintained for longer time.
The rainfall in July of 2022 in the central and western regions of Inner Mongolia was obviously less and showed a phased characteristic of more in the early stage and less in the late stage. The analysis of circulation distribution and configuration in different stages is of great significance for further improving precipitation forecast ability in flood season in this region. Daily precipitation of 116 national meteorological stations in Inner Mongolia, 130 climate indexes from the National Climate Center, daily reanalysis data from National Center for Environmental Prediction/National Center for Atmospheric Science (NCEP/NCAR) and monthly sea surface temperature (SST) data from the National Oceanic and Atmospheric Administration (NOAA) were used to analyze the causes of the flood-drought transition event in the central and western regions of Inner Mongolia in July 2022. The results are as follows: (1) In July 2022, the rainfall in the central and western regions of Inner Mongolia was seriously less, which was the least in the same period since 1991 in this region, and the meteorological drought was relatively serious. (2) From July 1 to 11, the precipitation was relatively more, the cold air path was northward and the intensity was weak, the Western Pacific Subtropical high was weak and its location was northward and westward, and the warm and cold air intermingled in the central and western regions of Inner Mongolia. In addition, the position of upper westerly jet was northward during this period, and the central and western regions of Inner Mongolia were located in the south of the jet axis, which was conducive to upper level divergence and the development of upward movement. While from July 12 to 31, the precipitation was obviously less, the meridian of circulation increased, the cold air activity path was more southerly and the intensity increased, the Western Pacific subtropical high was obviously stronger and the location was southward, which was not conducive to water vapor transport. In addition, the location of upper westerly jet was southward, and the central and western part of Inner Mongolia was located in the north of the jet axis, which was not conducive to upper level divergence and the development of upward movement. The stronger disturbance of the upper westerly jet in mid and late July was conducive to stimulating the meridional teleconnection wave train from East Asia to the Northwest Pacific, which led to the position of the Western Pacific subtropical high southward and less precipitation. (3) The abnormal SST from the Sea of Japan to the northwest of the North Pacific was one of the important external forcing signals that affect the amount of precipitation in central and western regions of Inner Mongolia. In July 2022, the SST in the region was abnormally high, and the cyclonic circulation triggered by the abnormal SST over the region weakened the meridional transport of warm and humid water vapor in the south, which was one of the reasons for the change of precipitation from flood to drought in central and western regions of Inner Mongolia.
Based on the rainfall station observations and the products of Multi-source Merged Precipitation Analysis System of China Meteorological Administration (CMPAS), eight kinds of satellite-based precipitation products (FY-4A, CMOPRH-RT, IMERG-Early, IMERG-Late, GSMaP-Now, GSMaP-Gauge, PERSIANN-Now, PERSIANN-CCS) are comprehensively evaluated during the record-breaking extremely heavy precipitation process in East Gansu on July 15, 2022 by using quantitative analysis, classification and structural similarity methods. The results show that eight kinds of satellite-based precipitation products basically reflect the spatial distribution characteristics of precipitation with more in the central and eastern regions and less in the northwest. Except for the GSMaP-Now product, the other seven satellite-based precipitation products all underestimate the precipitation at the center of the rainstorm. The eight kinds of satellite-based precipitation products have a good ability to describe the peak value of heavy precipitation, and both peak stages of the heavy precipitation process are reflected, but all of them seriously underestimate the magnitude of heavy rainfall and above. For precipitation of different magnitudes, the GSMaP-Gauge is the best for estimating precipitation of magnitude below torrential rain, while the CMOPRH-RT is the best for heavy rain and above, and all products cannot correctly hit the precipitation of torrential heavy rainfall. In terms of the structural similarity index, the CMOPRH-RT product can best represent the structural distribution of the precipitation process from three aspects of total precipitation, precipitation magnitude, and precipitation morphological distribution. In summary, for this precipitation event, the CMOPRH-RT precipitation product had the best performance in all aspects.
The northwest region of China is located in the hinterland of Eurasia, in which the source of water vapor is scarce, and drought is its main climatic feature. In recent years, with the continuous increase of regional precipitation, the warming and wetting in Northwest China has attracted great attention from all walks of life. In order to scientifically respond to social concerns, the team used multi-source data to conduct in-depth research on the phenomenon of warming and wetting in Northwest China from multi-scale and multi-dimensional perspectives, and found that the trend of wetting in Northwest China had significant and nonlinear enhancement characteristics. It is recognized that the wetting in Northwest China is expanding eastward, and the land surface evapotranspiration there has a special negative feedback mechanism on climate warming. It is estimated that the warming and wetting trend will still maintain in Northwest China in this century, and the wetting trend is driven by multi-factor comprehensive driving mechanism. The multi-aspect impacts of the warming and wetting in Northwest China are evaluated, and the technical countermeasures to deal with the warming and wetting there are put forward, and the research results of “the enhancement and eastward expansion of climate warming and humidification, formation mechanism and important environmental impacts in Northwest China” are formed. The major consultation report based on the research results has played an important decision-making support for the national strategies such as the development of the western region in the new era and the ecological protection and high-quality development of the Yellow River Basin. The research results were selected as “China's Top Ten Scientific and Technological Progress in Ecological Environment” in 2022, and have also received extensive attention from the international academic communities.
Precipitation is closely related to the occurrence and development of clouds. The study for the characteristics of convective cloud is of great significance to the precipitation monitoring and prediction, as well as researches of precipitation mechanism. A torrential rain struck Qingyang on15 July 2022, which is located in semi-arid region of Northwest China, causing the daily rainfall and hourly rainfall at several stations to exceed the historical extreme values. Based on products of the advanced geostationary radiation imager (AGRI) from FY-4A and FY-4B geostationary satellite, fusion products of micro-wave humidity sounder (MWHS) and micro-wave temperature sounder (MWTS) from FY-3D polar orbit satellite, the cloudsytem evolution, macro and micro characteristics of cloud, and the atmospheric environmental conditions during this torrential rainstorm event were analyzed. The results are as follows: (1) The rainstorm cloud top types formed from supercooled water clouds, mixed clouds, opaque ice clouds and multi-layer clouds. The cloud top types of heavy precipitation are mainly opaque ice clouds, and the height of cloud top is more than 14 km. The rainstorm cloud system is deep and mainly composed of small ice particles, and accompanied by strong updraft. (2) In this rainstorm event, there exist a process of convective cloud formation, merging and strengthening, and the continuous influence of convective clouds leds to the occurrence of extremely heavy rain. Precipitation was closely related to the black body temperature (TBB) of cloud top and its variation. Low TBB corresponded to heavy precipitation, and the TBB drops rapidly before the heavy precipitation. (3) Before the occurrence of heavy precipitation, atmospheric stratification is shallow convective instability. The strong humidification in the middle and lower layers is the main reason for the development of convective instability. The difference of absolute humidity in the lower layers leads to the difference of instable conditions and precipitation intensity.
Based on the hourly precipitation data from 302 regional automatic weather stations in the Loess Plateau arid region of eastern Gansu from 2013 to 2020, digital elevation model data from shuttle radar topography mission and ERA5 reanalysis data of European Centre for Medium-Range Weather Forecasts, etc., the spatio-temporal distribution characteristics of short-term heavy rainfall are analyzed, and on this basis that the relationship between it and topography, geography factors is discussed. Then combined with an extremely short-term heavy rainfall event in 2021, the influence mechanism of terrain is summarized. The results are as follows: (1) The short-term heavy rainfall mainly occurs in summer in the Loess Plateau arid region of eastern Gansu, and in July the proportion of short-term heavy rainfall days (35.9%) is the most and the extremity is the strongest, while in August the proportion of short-term heavy rainfall times (46.9%) is the most and the rainfall intensity is the strongest. The rainfall intensity mainly ranges from 22.0 to 31.0 mm·h-1, and it shows a multi-modal diurnal distribution with the most active, strongest and most extreme from 17:00 BST to next 00:00 BST, whose proportion of times is 56.8%. (2) The spatial distribution of the occurring times and hourly precipitation extremum of short-term heavy rainfall events is extremely uneven. The occurring times is less in the northwest and more in the southeast, it decreases sharply with the increase of rainfall intensity, and the short-term heavy rainfall occurs frequently in the area with valley bell-mouth topography, moreover, the palm landform is also the high incidence area of heavy precipitation above 30.0 mm·h-1. The extremum is small in the middle and large in the northeast and southwest, the large value mostly distributes in eastern Qingcheng and western Heshui. (3) The influence of geographical and topographic factors on occurring times of short-term heavy rainfall is significant, and its contribution comes from geographical location, while their influence on precipitation extremum isn’t obvious. In general, the topographic forced uplift isn’t main influence mechanism on short-term heavy rainfall in the Loess Plateau arid region of eastern Gansu. (4) The mountain-valley wind circulation and surface mesoscale convergence line induced by it are important inducement for the formation of short-term heavy rainfall in valley bell-mouth topography area in the Loess Plateau arid region of eastern Gansu.
A torrential rain struck Qingyang on July 15, 2022, which is located in semi-arid region of eastern Northwest China, causing the daily rainfall and hourly rainfall at several stations to exceed the historical extreme values. The formation mechanism of the torrential rain in semi-arid region of Northwest China is analyzed based on multi-source observation data and ERA5 reanalysis data, so as to provide some useful reference for rainstorm forecast in arid and semi-arid areas. The results show that the torrential rain process occurred under the background of weak synoptic scale baroclinic forcing, weak unstable energy and deep wet layer in the complex terrain of the Loess Plateau, with characteristics of strong locality and long duration of heavy precipitation, which is a warm-sector torrential rain. The special circulation configuration of South Asian high, western Pacific subtropical high and pressure system at the lower level is conducive to the occurrence and development of mesoscale convective system. Convective initiation and development were triggered by surface wind convergence line and low-level southerly jet. Development and long-time maintenance of the low-level jet intensified surface convergence line continuously. The left side of low-level jet (rainstorm area) formed two stable secondary circulations with the right side of the exit and entrance of it, respectively, which is the key factor for the maintenance of the convective system. The release of condensation latent heat caused local frontogenesis and low-level positive vorticity development, which is another important factor for development and maintenance of convective systems, and it is also an important reason for maintenance of atmospheric instability. The mesoscale convective system exhibited deep, low center of mass and quasi-stationary characteristics under the combined effects of the above mentioned factors, the radar echoes were characterized by backward propagation and train effect.
An extremely heavy rainstorm occurred on 14-15 July 2022 in Longdong, Gansu Province, which is located in semi-arid region, the daily rainfall and hourly rainfall intensity at several stations broke the historical extreme values. Based on the minutely and hourly precipitation observation data from 20:00 BST 14 to 20:00 BST 15 July 2022, the daily and hourly precipitation data from 192 regional meteorological stations since the establishment of them in Qingyang of Gansu Province, and the CMPAS (CMA Multi-source Merged Precipitation Analysis System) 10-minute and hourly precipitation data, the precipitation characteristics and extremity of the torrential rain event are analyzed. The results show that the extremely torrential rain event is characterized by large cumulative precipitation, concentrated rainfall area of rainstorm and above, strong convective precipitation, stable and less movement of the rainfall centers, and long duration of short-term strong precipitation, among which the extremities of cumulative precipitation, hourly precipitation intensity and short-term heavy precipitation duration are obvious. The heavy rainstorm center, Zhaijiahe station, is located in the middle and north part of Qingcheng County, the maximum accumulated rainfall is 373.2 mm, which is the maximum since the station establishment, and is nearly twice of daily precipitation extreme values at all national stations in Gansu Province. The maximum hourly rainfall is 84.9 mm, ranking the third in historical records at all stations in Qingyang, and the longest duration of short-term strong rainfall is as long as 6 hours, which is the maximum in historical records at all stations in Qingyang since establishment of them. The evolution of minutely precipitation shows that the precipitation intensity in the heavy precipitation center has pulsating change, and the precipitation location has swing in the east, west, south and north, but the swing amplitude is small.
Extreme precipitation events in arid areas often lead to huge casualties and economic losses, the study on its evolution characteristics and formation mechanism can provide an important support for improving the accuracy of weather forecast. A rainstorm process occurred on 13 August 2022 in Jinta County of Gansu Province, which was located in arid region of Northwest China. Both daily precipitation and hourly precipitation broke through the historical extreme value at national meteorological station Hexi Corridor, and their extreme and local characteristics were significant. European Centre for Medium-Range Weather Forecasts (ECMWF) fifth-generation global atmospheric reanalysis (ERA5) and observation data were used in this paper to analyze the causes of the rainstorm. The results show that the rainstorm occurred in the north side of the stable South Asia high, and the dynamic forcing in the upper and middle level of troposphere was weak. The baroclinic system, the lower level shear line and surface cold front in front of the 500 hPa short-wave trough, was mainly located in the lower level. The continuous transport of low-level water vapor around the thermal over the Qinghai-Tibet Plateau provided the extreme water vapor condition and the moderate intensity stratification instability for the rainstorm area. In front of the formation of surface cold front, the regional difference of low-level water vapor transport in central and eastern parts of Jiuquan City formed an obvious wet frontal and dryline. The meso-γ-scale convective system which caused extreme short-term heavy precipitation was triggered by the dryline, and developed into deep moist convection leading to extreme heavy rain at the intersection point of the cold front and the dryline. The local characteristics were significant during the development of the dryline convective cells to deep moist convection.
A torrential rain and hail stroke Shijiazhuang on July 26,2011. The strong and cold air flow on 500 hPa and above resulted in sharp shifts of synoptic situation at high altitude in twelve hours,with short wave trough moving southward rapidly,which caused the failure of radiosonde observation and numerical forecast. Based on other monitoring data,obvious characteristics of the dramatic changing weather were analyzed. Firstly,according to satellite images,the comma cloud above the Great Bend of the Huanghe River had long and stout tail,with a tendency of developing southward. The dark area at the rear part of clouds indicated the intrusion of dry cold air,which developed into convective clouds with warm and moist air at low altitude. The tail fracture suggested the acceleration of moving southward of cold air. Secondly,the Shijiazhuang single station element variation showed that the surface potential pseudo equivalent temperature was 8 ℃ higher than the normal value,which indicated abnormal instability energy. Strong convective weather with the largest precipitation was located in the intensive zone of pseudo equivalent potential temperature,which reached 90 ℃ at the energy center. The difference of pseudo equivalent potential temperature within 100 km was more than 25 ℃. Finally,the radar echoes arranged zonally from the southwest to the northeast with the strongest echo of 65 dBZ in the front. Gust front formed before the strongecho,its maximum positive and negative speed were both larger than 20 m/ s. The squall line moved from west to east and its path and intensity ditermined the path and intensity of precipitation and hail. The transformation of wind direction and formation of surface convergence line were 21 min and 30 min ahead of the precipitation,respectively.
This paper analyzed the continuous detecting data ofLanzhou CINRAD /CC Radar abouta hailprocess occurred in Dingxi on July 18, 2008, summarized themain characteristics of the radarproducts during this hailprocess such as reflectivity, radial velocity,RCS vertical section, vertical integrated liquid content and so on. Then it discussed the detection methods for monitoring hail by DopplerRadar, found out the typical echo characteristic of supercell storms such as hook echo, bounded weak echo region(BWER),echowal,l suspended echo, obvious influx nick, existingmesocyclone etc., and summed up some informationwhich are good fornowcasting ofhai,l such as severe change ofVIL, corresponding relationship ofET and hailprocess, obvious three-body scatter characteristic and so on, these information will be of great value for us to detect severeweather events by radar.
The ARPSmesoscale model is imp roved bymodifying cloud microphysical scheme. Three new p redictands and theirmicrophysical p rocesses, including the number concentration of rain (Nr) , snow (Ns) and hail (Nh) , are introduced into the model. One case of stratocumulus cloud in North China is simulated by the imp roved ARPS model. The characteristics of cloud development, p recip itation, cloud microphysical structure and cloud microphysical p rocess are investigated. The cse study suggests that the distribution of stratocumulus p recip itation is nonhomogeneouswith some p recip itation significance regions, and the cloud microphysical structure is nonhomogeneous in space. The vertical accumulating liquid water content in cumulus is higher than that in stratus; the ice phasep rocess leads this p recip itation, and the melting of graupel is the main source of rain.
New GenerationWeather Radar has become a chief means of monitoring the severe convective weather events occurred in Lanzhou and its surrounding areas. This paper analyzed data error sources in radar front - end and back - end p rocessing. Itwas found that clutter, radar antenna gain, monitoring distance and data interpolation, coordinate conversion, remote transmission to several ter2 minals are mainly error sources in radar front - end and back - end p rocessing, respectively.