Journal of Arid Meteorology ›› 2024, Vol. 42 ›› Issue (2): 166-179.DOI: 10.11755/j.issn.1006-7639(2024)-02-0166
• Articles • Previous Articles Next Articles
LU Xiaojuan1(), WANG Zhilan1,2(
), ZHANG Jinyu1, WANG Yun1, WANG Lijuan1, HU Die1, SHA Sha1, WANG Suping1, LI Yiping1
Received:
2023-10-27
Revised:
2024-01-17
Online:
2024-04-30
Published:
2024-05-12
陆晓娟1(), 王芝兰1,2(
), 张金玉1, 王昀1, 王丽娟1, 胡蝶1, 沙莎1, 王素萍1, 李忆平1
通讯作者:
王芝兰(1984—),女,甘肃兰州人,副研究员,主要从事干旱气候变化研究。E-mail: 作者简介:
陆晓娟(1998—),女,甘肃定西人,研究实习员,主要从事干旱成因研究。E-mail: 3214365642@qq.com。
基金资助:
CLC Number:
LU Xiaojuan, WANG Zhilan, ZHANG Jinyu, WANG Yun, WANG Lijuan, HU Die, SHA Sha, WANG Suping, LI Yiping. The synergistic effect of sea temperature and MJO on spring drought in southwestern China in 2023[J]. Journal of Arid Meteorology, 2024, 42(2): 166-179.
陆晓娟, 王芝兰, 张金玉, 王昀, 王丽娟, 胡蝶, 沙莎, 王素萍, 李忆平. 海温和MJO对2023年西南春旱的协同影响[J]. 干旱气象, 2024, 42(2): 166-179.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ghqx.org.cn/EN/10.11755/j.issn.1006-7639(2024)-02-0166
Fig.1 The spatial distribution of cumulative days of meteorological drought with moderate drought and above (a), severe drought and above (b) and extreme drought (c) in southwestern China in the spring of 2023 (Unit: d)
Fig.6 The spatial distribution of geopotential height anomalies (the color shaded, Unit: gpm) and T-N wave activity flux (arrow vectors, Unit: m2·s-2) at 200 hPa (a), divergence anomalies (the color shaded, Unit: 10-6 s-1), westerly winds (red isolines, Unit: m·s-1) and climatology westerly winds (green isolines, Unit: m·s-1) at 200 hPa (b) in March of 2023 (The purple border area indicates southwestern China)
Fig.7 The spatial distribution of geopotential height anomalies (the color shaded, Unit: gpm) and T-N wave activity flux (arrow vectors, Unit: m2·s-2) at 200 hPa (a), OLR anomalies (the color shaded, Unit: W·m-2) and stream function anomalies at 850 hPa (isolines, zero line not shown, the dotted line represents a negative value, Unit: 106 m2·s-1) (b), integrated water vapor flux (arrow vectors, Unit: g·m-1·s-1) and its divergence (the color shaded, Unit: g·m-2·s-1) (c), OLR anomalies (the color shaded, Unit: W·m-2), potential function anomalies (isolines, zero line not shown, the dotted line represents a negative value, Unit: 106 m2·s-1) and divergent wind anomalies (arrow vectors, Unit: m·s-1) at 200 hPa (d) in April of 2023
Fig.8 Geopotential height anomalies (the color shaded, Unit: gpm) and T-N wave activity flux (arrow vectors, Unit: m2·s-2) at 200 hPa (a), OLR anomalies (the color shaded, Unit: W·m-2) and stream function anomalies at 850 hPa (isolines, zero line not shown, the dotted line represents a negative value, Unit: 106 m2·s-1) (b), integrated water vapor flux (arrow vectors, Unit:g·m-1·s-1) and its divergence (the color shaded, Unit: g·m-2·s-1) (c), OLR anomalies (the color shaded, Unit: W·m-2), velocity potential anomalies (isolines, zero line not shown, the dotted line represents a negative value, Unit: 106 m2·s-1) and divergent wind anomalies (arrow vectors, Unit: m·s-1) at 200 hPa (d) in May of 2023
Fig.10 IOBW and NINO.WEST index from January, 2022 to August, 2023 (a), composite of 850 hPa stream function anomalies in the years with IOBW (b) and NINO.WEST (c)greater than or equal to 1 standard deviation in April (isolines, the dotted line represents a negative value, Unit: 106 m2·s-1) and its confidence level (the color shaded, a negative value indicates that the stream function is negative, Unit: %) (The red border area indicates southwestern China)
Fig.11 The 850 hPa stream function field in April 2023 obtained by IOBW and NINO.WEST partial regression (Unit: 106 m2·s-1) (The red border area indicates southwestern China)
[1] | 白旭旭, 李崇银, 李琳, 2012. MJO对中国春季降水影响的数值模拟研究[J]. 气象学报, 70(5): 986-1 003. |
[2] |
范磊, 刘秦玉, 2009. 西太平洋副热带高压与海表温度的关系[J]. 热带海洋学报, 28(5): 83-88.
DOI |
[3] |
韩兰英, 张强, 贾建英, 等, 2019. 气候变暖背景下中国干旱强度、频次和持续时间及其南北差异性[J]. 中国沙漠, 39(5): 1-10.
DOI |
[4] |
郝立生, 马宁, 何丽烨, 2022. 2022年长江中下游夏季异常干旱高温事件之环流异常特征[J]. 干旱气象, 40(5): 721-732.
DOI |
[5] |
胡学平, 许平平, 宁贵财, 等, 2015. 2012—2013年中国西南地区秋、冬、春季持续干旱的成因[J]. 中国沙漠, 35(3): 763-773.
DOI |
[6] | 黄荣辉, 刘永, 王林, 等, 2012. 2009年秋至2010年春我国西南地区严重干旱的成因分析[J]. 大气科学, 36(3): 443-457. |
[7] | 蒋薇, 张祖强, 刘芸芸, 2016. 21世纪以来西南地区干季降水与西太平洋副热带高压年代际变化的关系[J]. 气象, 42(11): 1 335-1 341. |
[8] | 琚建华, 吕俊梅, 谢国清, 等, 2011. MJO和AO持续异常对云南干旱的影响研究[J]. 干旱气象, 29(4): 401-406. |
[9] | 李崇银, 潘静, 宋洁, 2013. MJO研究新进展[J]. 大气科学, 37(2): 229-252. |
[10] | 李宏毅, 林朝晖, 陈红, 2012. 我国华南4、5月份降水年代际变化的特征及其与中西太平洋海温的可能关系[J]. 气候与环境研究, 17(4): 481-494. |
[11] |
李忆平, 张金玉, 岳平, 等, 2022. 2022年夏季长江流域重大干旱特征及其成因研究[J]. 干旱气象, 40(5): 733-747.
DOI |
[12] | 李莹, 高歌, 叶殿秀, 等, 2012. 2011年中国气候概况[J]. 气象, 38(4): 464-471. |
[13] | 李韵婕, 任福民, 李忆平, 等, 2014. 1960—2010年中国西南地区区域性气象干旱事件的特征分析[J]. 气象学报, 72(2): 266-276. |
[14] |
林纾, 李红英, 黄鹏程, 等, 2022. 2022年夏季我国高温干旱特征及其环流形势分析[J]. 干旱气象, 40(5): 748-763.
DOI |
[15] | 刘健文, 郭虎, 李耀东, 等, 2005. 天气分析预报物理量计算基础[M]. 北京: 气象出版社. |
[16] | 刘胜胜, 周顺武, 吴萍, 等, 2021. 青藏高原东部冬季降水对北极涛动异常的响应[J]. 气象学报, 79(4): 558-569. |
[17] | 刘瑜, 赵尔旭, 黄玮, 等, 2007. 2005年初夏云南严重干旱的诊断分析[J]. 热带气象学报, 23(1): 35-40. |
[18] | 刘芸芸, 高辉, 2021. 2021年春季我国气候异常特征及可能成因分析[J]. 气象, 47(10): 1 277-1 288. |
[19] | 龙园, 严锐, 任倩, 等, 2019. 我国西南地区春季降水对前期青藏高原热力作用的响应[J]. 中低纬山地气象, 43(4): 10-16. |
[20] |
罗纲, 阮甜, 陈财, 等, 2020. 农业干旱与气象干旱关联性——以淮河蚌埠闸以上地区为例[J]. 自然资源学报, 35(4): 977-991.
DOI |
[21] | 吕俊梅, 琚建华, 任菊章, 等, 2012. 热带大气MJO活动异常对2009—2010年云南极端干旱的影响[J]. 中国科学: 地球科学, 42(4): 599-613. |
[22] | 任芝花, 余予, 邹凤玲, 等, 2012. 部分地面要素历史基础气象资料质量检测[J]. 应用气象学报, 23(6): 739-747. |
[23] |
孙昭萱, 张强, 孙蕊, 等, 2022. 2022年西南地区极端高温干旱特征及其主要影响[J]. 干旱气象, 40(5): 764-770.
DOI |
[24] | 王劲松, 郭江勇, 倾继祖, 2007. 一种K干旱指数在西北地区春旱分析中的应用[J]. 自然资源学报, 22(5): 709-717. |
[25] | 王素萍, 王劲松, 张强, 等, 2015. 几种干旱指标对西南和华南区域月尺度干旱监测的适用性评价[J]. 高原气象, 34(6): 1 616-1 624. |
[26] | 王晓敏, 2012. 中国干旱化趋势及西南极端干旱成因研究[D]. 南京: 南京信息工程大学. |
[27] |
王莺, 张强, 王劲松, 等, 2022. 21世纪以来干旱研究的若干新进展与展望[J]. 干旱气象, 40(4): 549-566.
DOI |
[28] | 王有民, 叶殿秀, 艾婉秀, 等, 2013. 2012年中国气候概况[J]. 气象, 39(4): 500-507. |
[29] | 王芝兰, 冯建英, 沙莎, 2017. 2017年春季全国干旱状况及其影响与成因[J]. 干旱气象, 35(3): 528-533. |
[30] | 王芝兰, 周甘霖, 张宇, 等, 2019. 美国干旱监测预测业务发展及其科学挑战[J]. 干旱气象, 37(2): 183-197. |
[31] | 杨金虎, 张强, 王劲松, 等, 2015. 近60a来中国西南春季持续性干旱异常特征分析[J]. 干旱区地理, 38(2): 215-222. |
[32] | 姚玉璧, 张强, 王劲松, 等, 2014. 中国西南干旱对气候变暖的响应特征[J]. 生态环境学报, 23(9): 1 409-1 417. |
[33] | 姚玉璧, 张强, 王劲松, 等, 2015. 气候变暖背景下中国西南干旱时空分异特征[J]. 资源科学, 37(9): 1 774-1 784. |
[34] | 张成扬, 蒋跃林, 杨崧, 等, 2015. 5月华南降雨前期海温信号特征分析[J]. 气象与环境科学, 38(2): 29-35. |
[35] | 张强, 姚玉璧, 李耀辉, 等, 2020. 中国干旱事件成因和变化规律的研究进展与展望[J]. 气象学报, 78(3): 500-521. |
[36] | 张武龙, 张井勇, 范广洲, 2014. 我国西南地区干湿季降水的主模态分析[J]. 大气科学, 38(3): 590-602. |
[37] | 周倩, 凌铁军, 李响, 等, 2019. 中国周边海域海面温度日变化对区域气候的影响[J]. 气候与环境研究, 24(2): 214-226. |
[38] | 周惜荫, 李谢辉, 2021. 1978—2017年西南地区干湿时空变化特征[J]. 干旱气象, 39(3): 357-365. |
[39] | CHEN Q Y, HU H B, REN X J, et al, 2019. Numerical simulation of midlatitude upper-level zonal wind response to the change of North Pacific subtropical front strength[J]. Journal of Geophysical Research: Atmospheres, 124(9): 4 891-4 912. |
[40] | CHENG Q P, GAO L, ZHONG F L, et al, 2020. Spatiotemporal variations of drought in the Yunnan-Guizhou Plateau, Southwest China, during 1960—2013 and their association with large-scale circulations and historical records[J]. Ecological Indicators, 112, 106041. https://doi.org/10.1016/j.ecolind.2019.106041. |
[41] | DING T, GAO H, 2020. The record-breaking extreme drought in Yunnan province, Southwest China during spring-early summer of 2019 and possible causes[J]. Journal of Meteorological Research, 34(5): 997-1 012. |
[42] | DONG Z Z, YANG R W, CAOJ, et al, 2023. A strong high-temperature event in late-spring 2023 in Yunnan province, Southwest China: characteristics and possible causes[J]. Atmospheric Research, 295, 107017. https://doi.org/10.1016/j.atmosres.2023.107017. |
[43] | FAN Q W, ZHOU B T, 2022. Upper-tropospheric temperature pattern over the Asian-Pacific region in CMIP6 simulations: climatology and interannual variability[J]. Frontiers in Earth Science, 10, 917660. https://doi.org/10.3389/feart.2022.917660. |
[44] | FENG J, LI J P, 2011. Influence of El Niño Modoki on spring rainfall over South China[J]. Journal of Geophysical Research, 116(D13), D13102. https://doi.org/10.1029/2010JD015160. |
[45] | FENG L, ZHOU T J, 2012. Water vapor transport for summer precipitation over the Tibetan Plateau: Multidata set analysis[J]. Journal of Geophysical Research: Atmospheres, 117, D20114. https://doi.org/10.1029/2011JD017012. |
[46] | FUJII H, KOIKE T, IMAOKA K, 2009. Improvement of the AMSR-E algorithm for soil moisture estimation by introducing a fractional vegetation coverage dataset derived from MODIS data[J]. Journal of the Remote Sensing Society of Japan, 29(1): 282-292. https://doi.org/10.11440/rssj.29.282. |
[47] | GAO L, HAN X, CHEN X R, et al, 2023. The spring drought in Yunnan province of China: variation characteristics, leading impact factors, and physical mechanisms[J]. Atmosphere, 14(2), 294. https://doi.org/10.3390/atmos14020294. |
[48] | GILL A E, 1980. Some simple solutions for heat-induced tropical circulation[J]. Quarterly Journal of the Royal Meteorological Society, 106(449): 447-462. |
[49] | HUANG B Y, LIU C Y, BANZON V, et al, 2021. Improvements of the daily optimum interpolation sea surface temperature (DOISST) Vversion 2.1[J]. Journal of Climate, 34(8): 2 923-2 939. |
[50] | KALNAY E, KANAMITSU M, KISTLER R, et al, 1996. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society, 77(3): 437-471. |
[51] | LI G, CHEN J P, WANG X, et al, 2018. Remote impact of North Atlantic sea surface temperature on rainfall in southwestern China during boreal spring[J]. Climate Dynamics, 50(1): 541-553. |
[52] | LIU Y Y, HU Z Z, WU R G, et al, 2022. Causes and predictability of the 2021 spring southwestern China severe drought[J]. Advances in Atmospheric Sciences, 39(10): 1 766-1 776. |
[53] | LIU Y Y, LI D, HU Z Z, et al, 2023. The extremely wet spring of 2022 in Southwest China was driven by La Niña and Tibetan Plateau warming[J]. Atmospheric Research, 289, 106758. https://doi.org/10.1016/j.atmosres.2023.106758. |
[54] | LUO F, WANG S S, HE Y L, et al, 2022. Anthropogenic warming has increased the 2020 extreme hot and dry conditions over southwest China[J]. Bulletin of the American Meteorological Society, 103(3): S124-S129. |
[55] | MEI S L, CHEN S F, LI Y, et al, 2022. Interannual variations of rainfall in late spring over Southwest China and associated sea surface temperature and atmospheric circulation anomalies[J]. Atmosphere, 13(5), 735. https://doi.org/10.3390/atmos13050735. |
[56] | SU G L, ZHAN W, 2022. Abnormal depletion of terrestrial water storage and crustal uplift owing to the 2019 drought in Yunnan, China[J]. Geophysical Journal International, 231(1): 108-117. |
[57] | SUN C H, YANG S, 2012. Persistent severe drought in southern China during winter-spring 2011: large-scale circulation patterns and possible impacting factors[J]. Journal of Geophysical Research: Atmospheres, 117, D10112. https://doi.org/10.1029/2012JD017500. |
[58] | SUN S L, CHEN H S, JU W M, et al, 2017. On the coupling between precipitation and potential evapotranspiration: contributions to decadal drought anomalies in the Southwest China[J]. Climate Dynamics, 48(11): 3 779-3 797. |
[59] | TAKAYA K, NAKAMURA H, 2001. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow[J]. Journal of the Atmospheric Sciences, 58(6): 608-627. |
[60] | TRENBERTH K E, FASULLO J T, Shepherd T G, 2015. Attribution of climate extreme events[J]. Nature Climate Change, 5(8): 725-730. |
[61] | WANG J S, WANG S P, LI Y P, et al, 2018. A study of the k drought monitoring model[J]. Polish Journal of Environmental Studies, 27(1): 335-343. |
[62] | WANG L, CHEN W, ZHOU W, et al, 2015. Drought in southwest China: A review[J]. Atmospheric and Oceanic Science Letters, 8(6): 339-344. |
[63] | WANG S S, HUANG J P, YUAN X, 2021. Attribution of 2019 extreme spring-early summer hot drought over Yunnan in southwestern China[J]. Bulletin of the American Meteorological Society, 102(1): S91-S96. |
[64] | WEN D Y, ZHANG J W, CAO J, 2022. Impact of the Asian-Pacific Oscillation on the interannual variability of rainy season onset date in Southwest China[J]. Climate Dynamics, 59(3): 701-713. |
[65] | WEN Z, YU R, ZHAI P M, et al, 2023. The evolution process of a prolonged compound drought and hot extreme event in Southwest China during the 2019 pre-monsoon season[J]. Atmospheric Research, 283, 106551. https://doi.org/10.1016/j.atmosres.2022.106551. |
[66] | XIE S P, HU K M, HAFNER J, et al, 2009. Indian ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño[J]. Journal of Climate, 22(3): 730-747. |
[67] | YANG S, LAU K M, KIM K M, 2002. Variations of the East Asian jet stream and Asian-Pacific-American winter climate anomalies[J]. Journal of Climate, 15(3): 306-325. |
[1] | CHEN Xiaoxiao, HUANG Zhiyong, QIN Pengcheng, XIA Zhihong, YAO Yao, TANG Xingzhi, WANG Yingqiong. Atmospheric circulation and sea surface temperature characteristics of summer high temperature anomaly in the middle reaches of the Yangtze River [J]. Journal of Arid Meteorology, 2024, 42(4): 553-562. |
[2] | XIAO Ying, GAO Yaqi, DU Liangmin, REN Yongjian. Analysis on the characteristics and causes of intraseasonal differences of the continuous rainfall in Hanjiang River Basin during the summer and autumn in 2021 [J]. Journal of Arid Meteorology, 2024, 42(4): 563-575. |
[3] | LIU Wei, ZHAO Yanli, GAO Jing, LI Linhui, WANG Huimin. Cause analysis of flood-drought alternation event in July 2022 in arid and semi-arid region of Inner Mongolia [J]. Journal of Arid Meteorology, 2024, 42(1): 11-18. |
[4] | XIE Ao, LUO Boliang, DENG Jianbo, GAO Xiaxia. Characteristics and cause analysis of extreme and persistent drought in summer, autumn and winter in 2022/2023 in Hunan Province [J]. Journal of Arid Meteorology, 2023, 41(6): 910-922. |
[5] | GUO Jingyan, XIAO Dong. Changes of summer water vapor in Bengal region and its linkage with the interdecadal Pacific oscillation [J]. Journal of Arid Meteorology, 2023, 41(3): 380-389. |
[6] | XUE Liang, YUAN Shujie, WANG Jinsong. Progress and prospects of research on causes of meteorological drought in different regions in China [J]. Journal of Arid Meteorology, 2023, 41(1): 1-13. |
[7] | LI Yiping, ZHANG Jinyu, YUE Ping, WANG Suping, ZHA Pengfei, WANG Lijuan, SHA Sha, ZHANG Liang, ZENG Dingwen, REN Yulong, HU Die. Study on characteristics of severe drought event over Yangtze River Basin in summer of 2022 and its causes [J]. Journal of Arid Meteorology, 2022, 40(5): 733-747. |
[8] | LIU Shuyan, RONG Yanshu, LYU Xingyue, YIN Yuting. Comparative Analysis of Drought in China and the United States in 2012 [J]. Journal of Arid Meteorology, 2021, 39(5): 717-726. |
[9] | ZHOU Bin,WANG Chunxue,ZHANG Shunqian. Quasi-biennial Period Characteristics of Extreme Summer Drought Days and Its Possible Causes in Sichuan Basin During 1961-2018 [J]. Journal of Arid Meteorology, 2021, 39(5): 727-733. |
[10] | WU Bin, QIAN Ye, WANG Ruifang, ZHAO Xin, JIN Lei. Assessment of Largescale Environmental Factors Affecting Typhoon Intensity in Northwest Pacific Simulated by Global Climate Models [J]. Journal of Arid Meteorology, 2021, 39(3): 466-479. |
[11] | JING Yu, CHEN Chuang, WANG Jianpeng, HU Qiyuan. Comparative Analysis of Two Strong Precipitation Periods During an Extended Heavy Rain Process [J]. Journal of Arid Meteorology, 2020, 38(1): 126-136. |
[12] | LIU Xiaoran, HU Zuheng, LI Yonghua, TANG Hongyu. Variation Characteristics and Formation Cause of Cold and Warm Winter in Chongqing [J]. Journal of Arid Meteorology, 2020, 38(03): 404-410. |
[13] | GAN Lu, XING Nan, LEI Lei. Meteorological Causes of “8·11” Collapse Event in Beijing [J]. Journal of Arid Meteorology, 2020, 38(03): 433-439. |
[14] | ZHANG Yu,WANG Zhilan,SHA Sha,FENG Jianying. Drought Events and Its Causes in Summer of 2018 in China [J]. Journal of Arid Meteorology, 2018, 36(5): 884-892. |
[15] | CHEN Youli, QIAN Yanzhen, PAN Lingjie, DUAN Jingjing, ZHENG Meidi. Causes Analysis of a Heavy Rainfall Associated with Typhoon and Forecast Difficulties in Northeastern Zhejiang [J]. Journal of Arid Meteorology, 2018, 36(2): 272-281. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018 Journal of Arid Meteorology
Tel: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com