Journal of Arid Meteorology ›› 2023, Vol. 41 ›› Issue (3): 380-389.DOI: 10.11755/j.issn.1006-7639(2023)-03-0380
• Articles • Previous Articles Next Articles
GUO Jingyan1,2(), XIAO Dong2(
)
Received:
2022-06-20
Revised:
2022-11-09
Online:
2023-06-30
Published:
2023-07-02
Contact:
XIAO Dong
通讯作者:
肖栋
作者简介:
郭静妍(1998—),女,硕士研究生,主要从事气候变率的研究。E-mail: guojingyannn@163.com。
基金资助:
CLC Number:
GUO Jingyan, XIAO Dong. Changes of summer water vapor in Bengal region and its linkage with the interdecadal Pacific oscillation[J]. Journal of Arid Meteorology, 2023, 41(3): 380-389.
郭静妍, 肖栋. 孟加拉地区夏季水汽变化及其与太平洋年代际振荡的联系[J]. 干旱气象, 2023, 41(3): 380-389.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ghqx.org.cn/EN/10.11755/j.issn.1006-7639(2023)-03-0380
Fig.1 Spatial distribution of seasonal mean atmospheric precipitable water in southern Asia during 1979-2020 (Unit: kg·m-2) (The red rectangle is the Bengal region. the same as below)(a) spring, (b) summer, (c) autumn, (d) winter
Fig.2 The monthly change of average atmospheric precipitable water in the Bengal region during 1979-2020 (a), the time series and its trend of average atmospheric precipitable water from June to September in the Bengal region during 1979-2020 (b)
Fig.3 Spatial distribution of variation trends of the average vector wind (arrow vectors, Unit: m·s-1·a-1) and specific humidity (the shaded, Unit: 10-4 ?kg·kg-1·a-1) at 850 hPa (a) and the vertical integrated water vapor flux (arrow vectors, Unit: kg·m-1·s-1·a-1) and divergence (the shaded, Unit: 10-9 s-1·a-1) (b) in summer in southern Asia from 1979 to 2020(the dotted passing the significance test of α=0.1)
Fig.4 Time series and trends of water vapor budget of each boundary (a) and net water vapor budget (b) in the Bengal region in summer averaged from June to September during 1979-2020
气候平均 | 对区域水汽的贡献 | 趋势 | 对区域水汽的贡献 | |
---|---|---|---|---|
东边界 | 正值 | 区域内水汽减少 | 负值 | 支出水汽减少,区域内水汽增多 |
西边界 | 负值 | 区域内水汽减少 | 负值 | 支出水汽增加,区域内水汽减少 |
北边界 | 正值 | 区域内水汽减少 | 正值 | 支出水汽增加,区域内水汽减少 |
南边界 | 正值 | 区域内水汽增加 | 正值 | 收入水汽增加,区域内水汽增加 |
孟加拉区域 | 正值 | 区域内水汽增加 | 正值 | 收入水汽增加,区域内水汽增加 |
Tab.1 The trends of water vapor budget in each boundary and net water vapor budget in the Bengal region and physical meanings of positive and negative climatic states
气候平均 | 对区域水汽的贡献 | 趋势 | 对区域水汽的贡献 | |
---|---|---|---|---|
东边界 | 正值 | 区域内水汽减少 | 负值 | 支出水汽减少,区域内水汽增多 |
西边界 | 负值 | 区域内水汽减少 | 负值 | 支出水汽增加,区域内水汽减少 |
北边界 | 正值 | 区域内水汽减少 | 正值 | 支出水汽增加,区域内水汽减少 |
南边界 | 正值 | 区域内水汽增加 | 正值 | 收入水汽增加,区域内水汽增加 |
孟加拉区域 | 正值 | 区域内水汽增加 | 正值 | 收入水汽增加,区域内水汽增加 |
Fig.5 The vertical distribution of water vapor budget of each boundary and net water vapor budget (a) and their trends (b) in the Bengal region in summer averaged from June to September during 1979-2020 (the stars passing the significance test of α=0.1)
Fig.6 The distribution of correlation coefficients between APW in summer in the Bengal region and average sea surface temperature in the same period during 1979-2020 (the dotted area passing the significance test of α=0.05)
Fig.8 The 850 hPa (a) and 200 hPa (b) geopotential height (the color shaded, Unit: gpm) and horizontal wind (arrow vectors, Unit: m·s-1) regressed by IPO index averaged in summer during 1979-2020 (The dotted area and green arrow vectors pass the significance test of α=0.05)
Fig.9 The 850 hPa water vapor flux (arrow vectors, Unit: kg·m-1·s-1) and atmospheric precipitable water (the color shaded, Unit: kg·m-2) regressed by IPO index averaged in summer during 1979-2020 (The dotted area and red vector arrows pass the significance test of α=0.10)(a) 50 °E-120 ° E, 20 ° S-50 ° N, (b) 75 ° E-105 ° E, 15 ° N-35 ° N
[1] | 蔡学湛, 2001. 青藏高原雪盖与东亚季风异常对华南前汛期降水的影响[J]. 应用气象学报, 12(3): 358-367. |
[2] | 陈隆勋, 周秀骥, 李维亮, 等, 2004. 中国近80年来气候变化特征及其形成机制[J]. 气象学报, 62(5): 634-646. |
[3] | 丁一汇, 孙颖, 刘芸芸, 等, 2013. 亚洲夏季风的年际和年代际变化及其未来预测[J]. 大气科学, 27(2): 253-280. |
[4] | 郝立生, 丁一汇, 闵锦忠, 2016. 东亚夏季风变化与华北夏季降水异常的关系[J]. 高原气象, 35(5): 1 280-1 289. |
[5] | 李崇银, 2000. 气候动力学引论[M]. 北京: 气象出版社. |
[6] | 李栋梁, 张茜, 姚慧茹, 等, 2016. 北印度夏季风与中国河套及邻近地区盛夏降水的联系[J]. 高原气象, 35(6): 1 512-1 523. |
[7] | 李峰, 何金海, 2000. 北太平洋海温异常与东亚夏季风相互作用的年代际变化[J]. 热带气象学报, 16(3): 260-271. |
[8] | 唐民, 吕俊梅, 2007. 东亚夏季风降水年代际变异模态及其与太平洋年代际振荡的关系[J]. 气象, 33(10): 88-95. |
[9] | 陶诗言, 朱文妹, 赵卫, 1988. 论梅雨的年际变异[J]. 大气科学, 12(增刊1): 13-21. |
[10] | 王会军, 范可, 2013. 东亚季风近几十年来的主要变化特征[J]. 大气科学, 37(2): 313-318. |
[11] | 王绍武, 赵宗慈, 1979. 我国旱涝36年周期及其产生的机制[J]. 气象学报, 37(1): 64-73. |
[12] | 王绍武, 2001. 现代气候学研究进展[M]. 北京: 气象出版社. |
[13] | 王文, 许金萍, 蔡晓军, 等, 2017. 2013年夏季长江中下游地区高温干旱的大气环流特征及成因分析[J]. 高原气象, 36(6): 1 595-1 607. |
[14] | 徐建军, 朱乾根, 施能, 1996. 年代际气候变率问题的研究[J]. 南京气象学院学报, 19(4): 488-495. |
[15] | 尹树新, 江燕如, 1993. 季风异常与江淮地区旱涝关系[J]. 南京气象学院学报, 16(1): 89-96. |
[16] | 张人禾, 1999. El Ni(n)o盛期印度夏季风水汽输送在我国华北地区夏季降水异常中的作用[J]. 高原气象, 18(4): 567-574. |
[17] |
ARAYA-MELO P A, CRUCIFIX M, BOUNCEUR N, 2015. Global sensitivity analysis of the Indian monsoon during the Pleistocene[J]. Climate of the Past, 11(1): 45-61.
DOI URL |
[18] |
BOSMANS J H C, ERB M P, DOLAN A M, et al, 2018. Response of the Asian summer monsoons to idealized precession and obliquity forcing in a set of GCMs[J]. Quaternary Science Reviews, 188: 121-135.
DOI URL |
[19] | CHEN B, XU X D, ZHAO T, 2013. Main moisture sources affecting lower Yangtze River Basin in boreal summers during 2004-2009[J]. International Journal of Climatology, 33(4): 1 035-1 046. |
[20] |
CHENG T F, LU M, 2020. Moisture source-receptor network of the East Asian summer monsoon land regions and the associated atmospheric steerings[J]. Journal of Climate, 33(21): 9 213-9 231.
DOI URL |
[21] | CLEMENS S, YAMAMOTO M, THIRUMALAI K, et al, 2021. Remote and local drivers of Pleistocene South Asian summer monsoon precipitation: a test for future predictions[J]. Science Advances, 7(23): 1-15. |
[22] |
DESER C, PHILLIPS A S, HURRELL J W, 2004. Pacific interdecadal climate variability: linkages between the tropics and the north Pacific during Boreal winter since 1900[J]. Journal of Climate, 17(16): 3 109-3 124.
DOI URL |
[23] |
GILL A E, 1980. Some simple solutions for heat-induced tropical circulation[J]. Quarterly Journal of the Royal Meteorological Society, 106(449): 447-462.
DOI URL |
[24] | HALL A, MANABE S, 1999. The role of water vapor feedback in unperturbed climate variability and global warming[J]. Journal of climate, 12(8): 2 327-2 346. |
[25] | HAN W, MEEHL G A, HU A, et al, 2014. Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades[J]. Climate Dynamics, 43(5/6):1 357-1 379. |
[26] |
HE C, LIN A, GU D, et al, 2017. Interannual variability of Eastern China summer rainfall: the origins of the meridional triple and dipole modes[J]. Climate Dynamics, 48(1): 683-696.
DOI URL |
[27] | HENLEY B J, GERGIS J, KAROLY D J, et al, 2015. A tripole index for the interdecadal Pacific oscillation[J]. Climate dynamics, 45(11/12): 3 077-3 090. |
[28] | HERSBACH H, BELL B, BERRISFORD P, et al, 2020. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 146(730): 1 999-2 049. |
[29] | HUANG B, THORNE P W, BANZON V F, et al, 2017. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons[J]. Journal of Climate, 30(20): 8 179-8 205. |
[30] | HUANG X, ZHOU T, DAI A, et al, 2020. South Asian summer monsoon projections constrained by the interdecadal Pacific oscillation[J]. Science advances, 6(11): 1-10. |
[31] |
KRISHNAN R, SUGI M, 2003. Pacific decadal oscillation and variability of the Indian summer monsoon rainfall[J]. Climate Dynamics, 21(3): 233-242.
DOI URL |
[32] | LIU F, ZHANG W, JIN F F, et al, 2021. Decadal modulation of the ENSO-Indian ocean basin warming relationship during the decaying summer by the interdecadal Pacific oscillation[J]. Journal of Climate, 34(7): 2 685-2 699. |
[33] | MANTUA N J, HARE S R, ZHANG Y, et al, 1997. A Pacific interdecadal climate oscillation with impacts on salmon production[J]. Bulletin of the American Meteorological Society, 78(6): 1 069-1 080. |
[34] | NEWMAN M, ALEXANDER M A, AULT T R, et al, 2016. The Pacific decadal oscillation, revisited[J]. Journal of Climate, 29(12): 4 399-4 427. |
[35] | NEWMAN M, COMPO G P, ALEXANDER M A, 2003. ENSO-forced variability of the Pacific decadal oscillation[J]. Journal of Climate, 16(23): 3 853-3 857. |
[36] |
POWER S, CASEY T, FOLLAND C, et al, 1999. Inter-decadal modulation of the impact of ENSO on Australia[J]. Climate dynamics, 15(5): 319-324.
DOI URL |
[37] |
SHI Y, JIANG Z, LIU Z, et al, 2020. A Lagrangian analysis of water vapor sources and pathways for precipitation in East China in different stages of the East Asian summer monsoon[J]. Journal of Climate, 33(3): 977-992.
DOI URL |
[38] | SOLOMON S, ROSENLOF K H, PORTMANN R W, et al, 2010. Contributions of stratospheric water vapor to decadal changes in the rate of global warming[J]. Science, 327(5970): 1 219-1 223. |
[39] |
TRENBERTH K E, HURRELL J W, 1994. Decadal atmosphere-ocean variations in the Pacific[J]. Climate Dynamics, 9(6): 303-319.
DOI URL |
[40] |
TRENBERTH K E, 1990. Recent observed interdecadal climate changes in the Northern Hemisphere[J]. Bulletin of the American Meteorological Society, 71(7): 988-993.
DOI URL |
[41] | WU X, MAO J, 2019. Decadal changes in interannual dependence of the Bay of Bengal summer monsoon onset on ENSO modulated by the Pacific Decadal Oscillation[J]. Advances in Atmospheric Sciences, 36(12): 1 404-1 416. |
[42] |
YANG Q, MA Z, FAN X, et al, 2017. Decadal modulation of precipitation patterns over eastern China by sea surface temperature anomalies[J]. Journal of Climate, 30(17): 7 017-7 033.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018 Journal of Arid Meteorology
Tel: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com