Journal of Arid Meteorology ›› 2025, Vol. 43 ›› Issue (6): 939-952.DOI: 10.11755/j.issn.1006-7639-2025-06-0939
• Articles • Previous Articles Next Articles
REN Li1,2(
), BU Wenhui1, YU Zhenyu1, BAI Junjie3, LI Yao4
Received:2025-06-10
Revised:2025-09-28
Online:2025-12-31
Published:2026-01-19
任丽1,2(
), 卜文惠1, 于震宇1, 白俊杰3, 李瑶4
作者简介:任丽(1982—),女,河北南皮人,正高级工程师,主要从事灾害性天气研究及常规天气预报工作。E-mail:strli@163.com。
基金资助:CLC Number:
REN Li, BU Wenhui, YU Zhenyu, BAI Junjie, LI Yao. Analysis of a northeast cold vortex process accompanied by extreme precipitation[J]. Journal of Arid Meteorology, 2025, 43(6): 939-952.
任丽, 卜文惠, 于震宇, 白俊杰, 李瑶. 一次伴有极端降水的东北冷涡过程分析[J]. 干旱气象, 2025, 43(6): 939-952.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ghqx.org.cn/EN/10.11755/j.issn.1006-7639-2025-06-0939
Fig.1 Terrain of Heilongjiang Province (the color shaded, Unit: m), distributions of observed precipitation (the color dots, Unit: mm) from 08:00 on 25 to 08:00 on 27 (a) and from 08:00 on 27 to 08:00 on 30 (b), and the observed hourly precipitation at No.18 Farm Station in Hegang City from 20:00 on 25 to 08:00 on 27 (c) and at Anshan Township Station in Yanshou County from 09:00 on 27 to 22:00 on 29 (d) November 2024
Fig.2 The 500 hPa geopotential height field (the black contour lines, Unit: dagpm), temperature field (the red contour lines, Unit: ℃) and temperature advection (the color shaded, Unit: 10-5 K·s-1), 200 hPa horizontal wind field (arrow vectors, Unit: m·s-1; green vector indicates the wind speed greater than or equal to 50 m·s-1 and purple vector indicates wind speed greater than or equal to 70 m·s-1), 850 hPa horizontal wind field (wind barbs, Unit: m·s-1, only show the wind speed greater than or equal to 16 m·s-1) at 20:00 on 25 (a), 14:00 on 26 (b), 14:00 on 27 (c), and 08:00 on 28 November 2024
Fig.3 The sea level pressure field (the contour lines, Unit: hPa) and 850 hPa frontogenesis function (the color shaded, Unit: 10-1 K·(h·100 km)-1) at 14:00 on 26 (a), 02:00 on 27 (b), 08:00 on 27 (c), and 08:00 on 28 November 2024
Fig.4 Longitude-height (a, b, c) and latitude-height (d, e, f) cross section of temperature anomalies (the color shaded, Unit: ℃), geopotential height anomalies (black contour lines, Unit: dagpm) and potential vorticity (purple contour lines, Unit: 10-6 m2·K·s-1·kg-1) through the center of NECV at 14:00 on 26 (a, d), 08:00 on 27 (b, e) and 08:00 on 28 (c, f) November 2024 (The black shading represents the terrain, the red dot represents the center of NECV, the same as below)
Fig.5 Longitude-height section (a, b, c) of specific humidity (the color shaded, Unit: g·kg-1), meridional wind (contour lines, Unit: m·s-1) and composite of zonal wind and vertical velocity (arrow vectors), and latitude-height section (d, e, f) of specific humidity (the color shaded, Unit: g·kg-1), zonal wind (contour lines, Unit: m·s-1) and composite of meridional wind and vertical velocity (arrow vectors) through the center of NECV at 14:00 on 26 (a, d), 08:00 on 27 (b, e) and 08:00 on 28 (c, f) November 2024 (The vertical velocity multiplied by 100 in the velocity composite, the same as below)
Fig.6 The wind field (a, Unit: m·s-1; only show the wind speed greater than or equal to 16 m·s-1) of 850 hPa (blue arrows) and 925 hPa (black arrows) at 14:00 on 26 and vertical variation of the mean wind speed over the precipitation center region from 02:00 on 26 to 02:00 on 27 (b) November 2024 (The brown box denotes the precipitation center region, the brown vertical line indicates the low-level jet threshold)
Fig.7 Latitude-height section of 6-hourly fields of horizontal wind speed (the color shaded, Unit: m·s-1), meridional wind (the contour lines, Unit: m·s-1), and composite of meridional wind and vertical velocity (vectors) (a, c, e, g), and horizontal divergence (the color shaded, Unit: 10-5 s-1), specific humidity (red contour lines, Unit: g·kg-1), composite of meridional wind and vertical velocity (vectors), and vertical velocity (black contour lines, Unit: Pa·s-1) (b, d, f, h) along 130°E at 08:00 (a, b), 14:00 (c, d), and 20:00 (e, f) on 26, and 02:00 (g, h) on 27 November 2024
Fig.8 The vapor flux (vectors, Unit: g·s-1·cm-1·hPa-1), vapor flux divergence (the color shaded, Unit: 10-7 g·s-1·cm-2·hPa-1) and specific humidity (the contour lines, Unit: g·kg-1) at 925 hPa (a, c, e, g), and the total amount of precipitation in the entire atmosphere (the color shaded) and 6-hour precipitation (colored dots) (Unit: mm) (b, d, f, h) at 08:00 (a, b), 14:00 (c, d), and 20:00 (e, f) on 26, and 02:00 (g, h) on 27 November 2024 (The gray shading indicates terrain)
Fig.9 Longitude-height section along 47.5°N of horizontal wind speed (the color shaded, Unit: m·s-1), horizontal wind field (vectors, Unit: m·s-1) and vorticity velocity (the purple contour lines, Unit: Pa·s-1), and the meridional projection of 6-hour precipitation (a, b), and distribution of maximum wind speed (wind barbs, Unit: m·s-1) and 6-hour precipitation (colored dots, Unit: mm) (c, d) at14:00 on 26 (a, c) and 02:00 on 27 (b, d) November 2024 (The gray shading represents the height of the terrain, Unit: m)
Fig.10 The three-dimensional conceptual model for heavy precipitation associated with NECV (The grey shadow indicates area of heavy precipitation; the color shaded is terrain height, Unit: m)
| [1] | 才奎志, 姚秀萍, 孙晓巍, 等, 2022. 冷涡背景下辽宁龙卷气候特征和环境条件[J]. 气象学报, 80(1):82-92. |
| [2] | 丁婷, 陈丽娟, 崔大海, 2015. 东北夏季降水的年代际特征及环流变化[J]. 高原气象, 34(1):220-229. |
| [3] | 杜晓丹, 赵宇, 2024. 冷季不同锢囚类型温带气旋强降水过程统计分析[J]. 高原气象, 43(5):1190-1 206. |
| [4] | 段云霞, 崔锦, 李得勤, 等, 2024. 东北冷涡背景下两次强降水干侵入特征对比分析[J]. 干旱气象, 42(3):357-366. |
| [5] | 何立富, 齐道日娜, 余文, 2022. 引发东北极端暴雪的黄渤海气旋爆发性发展机制[J]. 应用气象学报, 33(4): 385-399. |
| [6] | 黄子怡, 赵宇, 李树岭, 等, 2023. 东北地区温带气旋暴雪过程的大气河特征[J]. 高原气象, 42(3):734-747. |
| [7] | 靳振华, 卜清军, 黄安宁, 2025. 冷涡背景下天津夏季三次不同强度极端短时强降水物理量特征对比分析[J]. 干旱气象, 43(3):424-434. |
| [8] | 刘丹玲, 王黎娟, 2022. 一次初春东北冷涡的结构特征及其降水成因[J]. 大气科学学报, 45(3):456-468. |
| [9] | 刘英, 王东海, 张中锋, 等, 2012. 东北冷涡的结构及其演变特征的个例综合分析[J]. 气象学报, 70(3):354-370. |
| [10] | 齐道日娜, 何立富, 张乐英, 2024. “21·11”极端暴雪过程多系统结构演变及热动力机制[J]. 气象, 50(1):18-32. |
| [11] | 全国气象防灾减灾标准化技术委员会, 2012. 降水量等级:GB/T28592—2012[S]. 北京: 中国标准出版社. |
| [12] | 任丽, 刘颖, 2025. 东北冷涡暖季气候特征及其降水在黑龙江省的时空分布[J]. 大气科学, 49(2):447-459. |
| [13] | 任丽, 杨娃娃, 唐熠, 等, 2015. 一次温带爆发性气旋引发的大暴雪过程诊断分析[J]. 气象与环境学报, 31(5):45-52. |
| [14] | 任丽, 张桂华, 周奕含, 等, 2016. 引发黑龙江省暴雪爆发性气旋个例动力分析[J]. 气象与环境学报, 32(2):28-36. |
| [15] | 史月琴, 高松影, 孙晶, 等, 2022. 辽宁一次区域性暴雨的特征条件与成因分析[J]. 高原气象, 41(3):630-645. |
| [16] | 孙力, 郑秀雅, 王琪, 1994. 东北冷涡的时空分布特征及其与东亚大型环流系统之间的关系[J]. 应用气象学报, 5(3):297-303. |
| [17] | 王宁, 云天, 布和朝鲁, 等, 2023. 中国东北地区两场罕见冻雨过程的对比分析[J]. 大气科学, 47(4):1267-1 282. |
| [18] | 王思慜, 赵桂香, 赵瑜, 等, 2024. 山西省两次极端大暴雪过程对比分析[J]. 干旱气象, 42(6):900-909. |
| [19] | 王晓明, 孙妍, 云天, 等, 2015. 1961—2010年吉林不同类型暴雪天气气候特征[J]. 高原气象, 34(4):1139-1 148. |
| [20] | 王艺杰, 赵宇, 赵玲, 2024. 冷季黑龙江省温带气旋影响下中尺度降水带特征[J]. 高原气象, 43(5):1216-1 233. |
| [21] | 吴剑坤, 黄初龙, 雷蕾, 2021. 2001—2018年北京地区暴雪天气雷达回波特征分析[J]. 气象科技, 49(1):107-113. |
| [22] | 徐庆喆, 徐爽, 金巍, 等, 2025. 辽宁两次极端雨转暴雪过程对比分析[J]. 干旱气象, 43(3):450-459. |
| [23] | 阎琦, 谭政华, 苏雨萌, 等, 2024. 东北冷涡背景下辽宁省一次罕见暴雪过程不同阶段降雪成因分析[J]. 气象与环境学报, 40(4):1-9. |
| [24] | 易笑园, 张庆, 陈宏, 等, 2023. 一次华北暴风雪过程中边界层中尺度扰动涡旋和水汽输送特征的分析[J]. 高原气象, 42(5):1311-1 324. |
| [25] | 云天雨, 孟莹莹, 张桂华, 2024. 一次极端暴雪事件中罕见冻雨成因分析[J]. 沙漠与绿洲气象, 18(4):91-99. |
| [26] | 赵恩榕, 潘筱龙, 姚蓉, 等, 2023. 基于卫星与双极化多普勒天气雷达的湖南中部地区一次极端暴雪应用分析[J]. 高原山地气象研究, 43(4):134-145. |
| [27] | 赵婷婷, 孟鑫, 高凌峰, 等, 2023. 2021年11月6—9日辽宁省极端暴雪过程诊断分析[J]. 气象与环境学报, 39(6):10-17. |
| [28] | 朱乾根, 林锦瑞, 寿绍文, 等, 2007. 天气学原理和方法[M]. 4版. 北京: 气象出版社. |
| [29] | CHEN G X, LAN R Y, ZENG W X, et al, 2018. Diurnal variations of rainfall in surface and satellite observations at the monsoon coast (south China)[J]. Journal of Climate, 31(5): 1 703-1 724. |
| [30] | DU Y, ZHANG Q H, CHEN Y L, et al, 2014. Numerical simulations of spatial distributions and diurnal variations of low-level jets in China during early summer[J]. Journal of Climate, 27(15): 5 747-5 767. |
| [31] | ZHANG M R, MENG Z Y, 2019. Warm-sector heavy rainfall in Southern China and its WRF simulation evaluation: A low-level-jet perspective[J]. Monthly Weather Review, 147(12): 4 461-4 480. |
| [32] | ZHOU F, FANG Y H, SHI J, et al, 2023. Modulation of mid-high-latitude intraseasonal variability on the occurrence frequency of Northeast China cold vortex in early summer[J]. Journal of Climate, 36(12): 4 235-4 253. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
©2018 Journal of Arid Meteorology
Tel: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com