[1] |
曹晓云, 周秉荣, 周华坤, 等, 2022. 气候变化对青藏高原植被生态系统的影响研究进展[J]. 干旱气象, 40(6):1068-1 080.
|
[2] |
冯蜀青, 王海娥, 柳艳香, 等, 2019. 西北地区未来10 a气候变化趋势模拟预测研究[J]. 干旱气象, 37(4):557-564.
|
[3] |
冯晓莉, 马占良, 管琴, 等, 2021. 1980—2018年青海高原冰雹分布特征及其关键影响因素分析[J]. 气象, 47(6):717-726.
|
[4] |
彭宇翔, 文继芬, 李皓, 等, 2021. 基于决策树模型的贵州降雹识别研究[J]. 中低纬山地气象, 45(6): 99-101.
|
[5] |
彭宇翔, 吕建永, 顾赛菊, 2016. 利用支持向量机预测大磁暴期间Dst指数的变化[J]. 空间科学学报, 36(6):866-874.
|
[6] |
王姝, 张亮, 朱红秀, 等, 2024. 2022年7—8月干旱对川西高原植被长势的影响[J]. 高原山地气象研究, 44(1):94-103.
|
[7] |
易雪, 杨森, 刘鸣彦, 等, 2021. 辽宁省植被覆盖度时空变化特征及其对气候变化的响应[J]. 干旱气象, 39(2):252-261.
|
[8] |
张强, 张存杰, 白虎志, 等, 2010. 西北地区气候变化新动态及对干旱环境的影响:总体暖干化,局部出现暖湿迹象[J]. 干旱气象, 28(1):1-7.
|
[9] |
朱生翠, 周秉荣, 魏永林, 等, 2020. 气候变化对青海湖北岸天然牧草生长发育的影响[J]. 干旱气象, 38(5): 804-809.
|
[10] |
CANDES E, TAO T, 2007. The dantzig selector: Statistical estimation when p is much larger than n[J]. The Annals of Statistics, 35(6): 2 313-2 351.
|
[11] |
COLLIER C G, LILLEY R E, 1994. Forecasting thunderstorm initiation in north-west Europe using thermodynamic indices, satellite and radar data[J]. Meteorological Applications, 1(1): 75-84.
|
[12] |
FAN J Q, LI R Z, 2001. Variable selection via nonconcave penalized likeli-hood and its oracle properties[J]. Journal of the American Statistical Association, 96(456): 1 348-1 360.
|
[13] |
HUNTRIESER H, SCHIESSER H H, SCHMID W, et al, 1997. Comparison of traditional and newly developed thunderstorm indices for Switzerland[J]. Weather and Forecasting, 12(1): 108-125.
|
[14] |
JOHNS R H, DOSWELLⅢ C A, 1992. Severe local storms forecasting[J]. Weather and Forecasting, 7(4): 588-612.
|
[15] |
LEE R R, PASSNER J E, 1993. The development and verification of TIPS: An expert system to forecast thunderstorm occurrence[J]. Weather and Forecasting, 8(2): 271-280.
|
[16] |
LU J Y, PENG Y X, WANG M, 2016. Support vector machine combined with distance correlation learning for Dst forecasting during intense geomagnetic storms[J]. Planetary and Space Science, 120: 48-55.
|
[17] |
LÓPEZ L, GARCIA-ORTEGA E, SÁNCHEZ J L, 2007. A short-term forecast model for hail[J]. Atmospheric Research, 83(2/3/4): 176-184.
|
[18] |
LÓPEZ L, MARCOS J L, SÁNCHEZ J L, et al, 2001. CAPE values and hailstorms on northwestern Spain[J]. Atmospheric Research, 56(1/2/3/4): 147-160.
|
[19] |
MAI Q, ZOU H, 2013. The Kolmogorov filter for variable screening in high-dimensional binary classification[J]. Biometrika, 100(1): 229-234.
|
[20] |
MCNULTY R P, 1995. Severe and convective weather: A central region forecasting challenge[J]. Weather and Forecasting, 10(2): 187-202.
|
[21] |
NEUMANN C J, 1971. The thunderstorm forecasting system at the kennedy space center[J]. Journal of Applied Meteorology, 10(5): 921-936.
|
[22] |
ORLANSKI I, 1975. A rational subdivision of scales for atmospheric processes[J]. Bulltin of the American Meteorological Society, 56: 527-530.
|
[23] |
REAP R M, FOSTER D S, 1979. Automated 12-36 hour probability forecasts of thunderstorms and severe local storms[J]. Journal of Applied Meteorology, 18(10): 1 304-1 315.
|
[24] |
REAP R M, MACGORMAN D R, 1989. Cloud-to-ground lightning: Climatological characteristics and relationships to model fields, radar observations, and severe local storms[J]. Monthly Weather Review, 117(3): 518-535.
|
[25] |
TIBSHIRANI R, 1996. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 58(1): 267-288.
|
[26] |
TUDURÍ E, RAMIS C, 1997. The environments of significant convective events in the western Mediterranean[J]. Weather and Forecasting, 12(2): 294-306.
|
[27] |
VAPNIK V N, 1998. Statistical learning theory[M]. New York: John Wiley&SonsInc.
|
[28] |
VAPNIK V N, 1995. The nature of statistical learning theory[M]. New York: Springer-Verlag.
|
[29] |
YANG F, WHITE M A, MICHAELIS A R, et al, 2006. Nemani, prediction of continental-scale evapotranspiration by combining MODIS and AmeriFlux data through support vector machine[J]. IEEE Transactions on Geoscience and Remote Sensing, 44(11): 3 452-3 461.
|
[30] |
ZOU H, 2006. The adaptive lasso and its oracle properties[J]. Journal of the American Statistical Association, 101(476): 1 418-1 429.
|