Journal of Arid Meteorology ›› 2025, Vol. 43 ›› Issue (4): 510-520.DOI: 10.11755/j.issn.1006-7639-2025-04-0510
• Column on “Regional High Temperature” • Previous Articles Next Articles
CHEN Junzhi1,2(), BO Zhongkai1,2(
), XU Weiping1,2, MENG Xiangxin1,2, CAO Jie1,2
Received:
2024-04-01
Revised:
2025-03-12
Online:
2025-08-31
Published:
2025-09-08
陈君芝1,2(), 伯忠凯1,2(
), 徐玮平1,2, 孟祥新1,2, 曹洁1,2
通讯作者:
伯忠凯
作者简介:
陈君芝(1998—),女,山东淄博人,助理工程师,主要从事短期气候预测研究。E-mail: 3462918502@qq.com。
基金资助:
CLC Number:
CHEN Junzhi, BO Zhongkai, XU Weiping, MENG Xiangxin, CAO Jie. Characteristics and mechanisms of regional persistent high-temperature processes in June in Shandong[J]. Journal of Arid Meteorology, 2025, 43(4): 510-520.
陈君芝, 伯忠凯, 徐玮平, 孟祥新, 曹洁. 山东省6月区域性持续高温过程的变化特征及成因分析[J]. 干旱气象, 2025, 43(4): 510-520.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ghqx.org.cn/EN/10.11755/j.issn.1006-7639-2025-04-0510
区域性高温事件强度等级划分 | 指标 |
---|---|
特强 | 1≤RI<2 |
强 | 2≤RI<3 |
中等 | 3≤RI<4 |
弱 | RI≥4 |
Tab.1 Classification of intensity levels for regional persistent high temperature processes
区域性高温事件强度等级划分 | 指标 |
---|---|
特强 | 1≤RI<2 |
强 | 2≤RI<3 |
中等 | 3≤RI<4 |
弱 | RI≥4 |
Gk | SI百分位取值区间 |
---|---|
1 | ≥95% |
2 | [85%,95%) |
3 | [60%,85%) |
4 | <60% |
5 | 无高温 |
Tab.2 Classification of intensity levels for single station high temperature
Gk | SI百分位取值区间 |
---|---|
1 | ≥95% |
2 | [85%,95%) |
3 | [60%,85%) |
4 | <60% |
5 | 无高温 |
Fig.2 Interannual changes in the cumulative frequency (a) and cumulative days (b) of regional high-temperature processes in June in Shandong Province from 1979 to 2023
Fig.4 The annual variation of the detrended standardized RPH in Shandong Province from 1979 to 2023(The black dashed lines represent ±1 standard deviation)
Fig.5 The positive anomaly frequency of the 500 hPa height anomaly field (a) and 850 hPa temperature anomaly field (b) synthesized by the regional high temperature strong years in Shandong (Unit:%) (The enclosed by the black line within the black box indicates Shandong Province,the same as below)
Fig.6 The spatial distribution of the correlation coefficients between sea surface temperature anomaly and RPH in Shandong during 1979-2023 (The black dots indicate reaching the 95% confidence level)
Fig.7 The first (a, b) and second (c, d) EOF modes (a, c) of sea surface temperature in June with their standardized time coefficients (b, d) during 1979-2023
Fig.9 Composite of the TNX of the 200 hPa (arrow vectors, Unit: m2·s-2) and its divergence (the color shaded, Unit: m·s-2) (a) and the TNz of the 500 hPa (b, Unit: (hPa)2·s?1) during typical NAT negative-phase years (The black box is the critical zone, the red arrows indicate propagation pathways of TN wave activity flux)
Fig.10 The positive anomaly frequency of the 500 hPa height anomaly field (a) and the 850 hPa temperature anomaly field (b) synthesized by the typical years of NAT-negative phase (Unit: %)
[1] | 柏庆顺, 颜鹏程, 蔡迪花, 等, 2019. 近56 a中国西北地区不同强度干旱的年代际变化特征[J]. 干旱气象, 37(5): 722-728. |
[2] | 陈磊, 王式功, 尚可政, 等, 2011. 中国西北地区大范围极端高温事件的大气环流异常特征[J]. 中国沙漠, 31(4):1052-1 058. |
[3] |
陈笑笑, 黄治勇, 秦鹏程, 等, 2024. 长江中游夏季高温异常的大气环流和海温特征[J]. 干旱气象, 42(4): 553-562.
DOI |
[4] | 董少柔, 林爱兰, 董彦彤, 2023. 1961—2017年华南区域性持续高温过程年际变化成因分析[J]. 大气科学, 47(5):1325-1 340. |
[5] | 范潇丹, 2020. 热带太平洋与热带大西洋的海温梯度统计关系研究[J]. 气候变化研究快报(6):700-710. |
[6] | 冯蜀青, 王海娥, 柳艳香, 等, 2019. 西北地区未来10 a气候变化趋势模拟预测研究[J]. 干旱气象, 37(4): 557-564. |
[7] | 葛家荣, 任雪娟, 2019. 南亚高压次季节尺度东西振荡对我国长江流域降水及水汽输送的影响[J]. 气象科学, 39(6):711-720. |
[8] |
郝立生, 马宁, 何丽烨, 2022. 2022年长江中下游夏季异常干旱高温事件之环流异常特征[J]. 干旱气象, 40(5):721-732.
DOI |
[9] | 候启, 赵玉洁, 陈小苏, 2024. 近60年山东省5—8月高温热浪变化特征分析[J]. 陕西气象(2):30-37. |
[10] | 李蕾, 吴琼, 邓超, 2024. 1961—2022年中国东部高温日数区域差异特征[J]. 气象与减灾研究, 47(2):104-112. |
[11] | 李瑞英, 吕桂恒, 郝晓雷, 等, 2024. 鲁西南区域性高温干旱复合事件特征及危险性分析[J]. 中国农业气象, 45(6):657-668. |
[12] | 李艳, 栗晗, 叶培龙, 等, 2014. 1980—2010年华北地区极端高温天气气候事件特征分析[J]. 兰州大学学报:自然科学版, 50(6):832-837. |
[13] | 林爱兰, 谷德军, 彭冬冬, 等, 2021. 近60年我国东部区域性持续高温过程变化特征[J]. 应用气象学报, 32(3):302-314. |
[14] | 彭京备, 刘舸, 孙淑清, 2016. 2013年我国南方持续性高温天气及副热带高压异常维持的成因分析[J]. 大气科学, 40(5):897-906. |
[15] | 全国气象防灾减灾标准化技术委员会, 2014. 区域性高温天气过程等级划分:QX/T 228-2014[S]. 北京: 气象出版社. |
[16] | 时晓曚, 孙即霖, 孙雅文, 等, 2015. 北大西洋秋季“三极子”海温结构对冬季大气环流场的影响[J]. 海洋学报, 37(7):33-40. |
[17] | 史军, 丁一汇, 崔林丽, 2009. 华东极端高温气候特征及成因分析[J]. 大气科学, 33(2):347-358. |
[18] | 孙建奇, 王会军, 袁薇, 2011. 我国极端高温事件的年代际变化及其与大气环流的联系[J]. 气候与环境研究, 16(2):199-208. |
[19] | 孙亚卿, 李春, 石剑, 2022. 长江流域夏季极端高温的年代际变化特征及其与大西洋多年代际振荡的关系[J]. 中国海洋大学学报:自然科学版, 52(2):13-22. |
[20] | 王国复, 叶殿秀, 张颖娴, 等, 2018. 2017年我国区域性高温过程特征及异常大气环流成因分析[J]. 气候变化研究进展, 14(4):341-349. |
[21] | 王慧美, 刘舸, 彭京备, 等, 2021. 热带大西洋海温异常季节内演变对中国江南地区夏季持续性高温事件影响的初步研究[J]. 大气科学, 45(2):300-314. |
[22] | 王劲松, 费晓玲, 魏锋, 2008. 中国西北近50 a来气温变化特征的进一步研究[J]. 中国沙漠, 28(4):724-732. |
[23] | 王林, 徐霈强, 2024. 北半球夏季急流遥相关:进展与展望[J]. 大气科学, 48(1):287-304. |
[24] | 王喜元, 闫业超, 岳书平, 等, 2016. 1961—2010年长江流域高温热浪时空变化特征[J]. 云南大学学报:自然科学版, 38(4):602-609. |
[25] | 王亚伟, 翟盘茂, 田华, 2006. 近40年南方高温变化特征与2003年的高温事件[J]. 气象, 32(10):27-33. |
[26] | 卫捷, 孙建华, 2007. 华北地区夏季高温闷热天气特征的分析[J]. 气候与环境研究, 12(3):453-463. |
[27] | 肖贻青, 2017. 乌拉尔山阻塞与北大西洋涛动的关系及其对中国冬季天气的影响[J]. 高原气象, 36(6):1499-1 511. |
[28] |
许婷婷, 杨霞, 周鸿奎, 2022. 1981—2019年新疆区域性高温天气过程时空特征及其环流分型[J]. 干旱气象, 40(2):212-221.
DOI |
[29] |
颜鹏程, 李忆平, 曾鼎文, 等, 2024. 2024年4—6月我国区域性高温干旱特征及其影响因子[J]. 干旱气象, 42(4): 507-518.
DOI |
[30] |
杨涵洧, 封国林, 2016. 2013年盛夏中国持续性高温事件诊断分析[J]. 高原气象, 35(2):484-494.
DOI |
[31] | 尹泽疆, 魏维, 杨崧, 2023. 北大西洋涛动和英国-鄂霍次克海走廊型遥相关对2022年盛夏长江中下游极端高温的影响[J]. 大气科学学报, 46(3):345-353. |
[32] | 翟盘茂, 潘晓华, 2003. 中国北方近50年温度和降水极端事件变化[J]. 地理学报, 58(增刊1):1-10. |
[33] |
张强, 2022. 科学解读“2022年长江流域重大干旱”[J]. 干旱气象, 40(4):545-548.
DOI |
[34] | 张迎新, 张守保, 2010. 2009年华北平原大范围持续性高温过程的成因分析[J]. 气象, 36(10):8-13. |
[35] | 邹瑾, 李君, 高理, 等, 2022. 山东区域性高温的变化特征及其对增暖的响应[J]. 气象科技, 50(6):802-811. |
[36] | DING T, QIAN W H, YAN Z W, 2010. Changes in hot days and heat waves in China during 1961-2007[J]. International Journal of Climatology, 30(10): 1 452-1 462. |
[37] |
DING T, YUAN Y, ZHANG J M, et al, 2019. 2018: The hottest summer in China and possible causes[J]. Journal of Meteorological Research, 33(4): 577-592.
DOI |
[38] | EASTERLING D R, EVANS J L, GROISMAN P Y, et al, 2000. Observed variability and trends in extreme climate events: A brief review[J]. Bulletin of the American Meteorological Society, 81(3): 417-426. |
[39] | GONG D Y, PAN Y Z, WANG J A, 2004. Changes in extreme daily mean temperatures in summer in Eastern China during 1955-2000[J]. Theoretical and Applied Climatology, 77(1): 25-37. |
[40] | HERSBACH H, BELL B, BERRISFORD P, et al, 2020. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 146(730): 1 999-2 049. |
[41] | HSU P C, QIAN Y T, LIU Y, et al, 2020. Role of abnormally enhanced MJO over the Western Pacific in the formation and subseasonal predictability of the record-breaking Northeast Asian heatwave in the summer of 2018[J]. Journal of Climate, 33(8): 3 333-3 349. |
[42] | IPCC, 2021. Climate Change 2021: The physical science basis[R]. Cambridge and New York: Cambridge University Press. |
[43] | ITO H, JOHNSON N C, XIE S P, 2013. Subseasonal and interannual temperature variability in relation to extreme temperature occurrence over East Asia[J]. Journal of Climate, 26(22): 9 026-9 042. |
[44] | KANAMITSU M, EBISUZAKI W, WOOLLEN J, et al, 2002. NCEP-DOE AMIP-II reanalysis (R-2)[J]. Bulletin of the American Meteorological Society, 83(11): 1 631-1 644. |
[45] | LOU W P, YAO Y P, SUN K, et al, 2019. Variability of heat waves and recurrence probability of the severe 2003 and 2013 heat waves in Zhejiang Province, Southeast China[J]. Climate Research, 79 (1): 63-75. |
[46] |
MEEHL G A, TEBALDI C, 2004. More intense, more frequent, and longer lasting heat waves in the 21st century[J]. Science, 305(5686): 994-997.
DOI PMID |
[47] | ROBINE J M, CHEUNG S L K, ROY S L, et al, 2008. Death toll exceeded 70 000 in Europe during the summer of 2003[J]. Comptes Rendus Biologies, 331(2): 171-178. |
[48] | SAHA S, MOORTHI S, PAN H L, et al, 2010. The NCEP climate forecast system reanalysis[J]. Bulletin of the American Meteorological Society, 91(8): 1 015-1 058. |
[49] | TAKAYA K, NAKAMURA H, 1997. A formulation of a wave-activity flux for stationary Rossby waves on zonally varying basic flow[J]. Geophysical Research Letters, 24(23): 2 985-2 988. |
[50] | TANG Q H, ZHANG X J, FRANCIS J A, 2014. Extreme summer weather in northern mid-latitudes linked to a vanishing cryosphere[J]. Nature Climate Change, 4(1): 45-50. |
[51] | WANG H M, LIU G, CHEN J M, 2017. Contribution of the tropical western Atlantic thermal conditions during the preceding winter to summer temperature anomalies over the lower reaches of the Yangtze River basin-Jiangnan region[J]. International Journal of Climatology, 37(13): 4 361-4 642. |
[52] | WU B Y, FRANCIS J A, 2019. Summer arctic cold anomaly dynamically linked to East Asian heat waves[J]. Journal of Climate, 32(4): 1 137-1 150. |
[53] | WU R G, YANG S, LIU S, et al, 2011. Northeast China summer temperature and North Atlantic SST[J]. Journal of Geophysical Research, 116(D16): D16116. DOI: 10.1029/2011JD015779. |
[54] | WU X H, XU Y M, CHEN H J, 2020. Study on the spatial pattern of an extreme heat event by remote sensing: A case study of the 2013 extreme heat event in the Yangtze River Delta, China[J]. Sustainability, 12(11): 4 415. DOI: 10.3390/su12114415. |
[55] | XU P Q, WANG L, DONG Z Z, et al, 2022. The British-Okhotsk Corridor pattern and its linkage to the Silk Road pattern[J]. Journal of Climate, 35(17): 5 787-5 804. |
[56] | XU Y, GAO X J, SHEN Y, et al, 2009. A daily temperature dataset over China and its application in validating a RCM simulation[J]. Advances in Atmospheric Sciences, 26(4): 763-772. |
[57] | YU T T, FENG J, CHEN W, et al, 2022. The interdecadal change of the relationship between North Indian Ocean SST and tropical North Atlantic SST[J]. Journal of Geophysical Research: Atmospheres, 127(6): e2022JD037078. DOI: 10.1029/2022JD037078. |
[58] | ZHANG G W, ZENG G, LI C, et al, 2020. Impact of PDO and AMO on interdecadal variability in extreme high temperatures in North China over the most recent 40-year period[J]. Climate Dynamcis, 54(6): 3 003-3 020. |
[1] | HU Yuepeng, ZHAO Junping, LIU Hanhua, FU Yuan, SUN Shanlei, SONG Ziyi. Analysis on causes of extreme high temperature in Zhejiang Province during July-September in 2024 [J]. Journal of Arid Meteorology, 2025, 43(4): 499-509. |
[2] | ZHANG Li, SHEN Baizhu, LI Tianyu, JIN He, WANG Ling. Formation mechanism and impacts of low-temperature and spring flood events in Northeast China [J]. Journal of Arid Meteorology, 2025, 43(4): 586-594. |
[3] | CHEN Xiaoxiao, HUANG Zhiyong, QIN Pengcheng, XIA Zhihong, YAO Yao, TANG Xingzhi, WANG Yingqiong. Atmospheric circulation and sea surface temperature characteristics of summer high temperature anomaly in the middle reaches of the Yangtze River [J]. Journal of Arid Meteorology, 2024, 42(4): 553-562. |
[4] | ZENG Dingwen, LI Yaohui, ZHANG Wenbo, GOU Shang. North Atlantic Storm Track Response to the Triple - Pattern SST Anomalies in CAM3.0 [J]. Journal of Arid Meteorology, 2015, 33(1): 70-77. |
[5] | WEI Feng, WANG Jin-Song. Relationships Between Precipitation of Northwest China from July to the First Ten Days of September and North Pacific Sea Surface Temperature [J]. J4, 2010, 28(4): 396-400. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018 Journal of Arid Meteorology
Tel: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com