Journal of Arid Meteorology ›› 2023, Vol. 41 ›› Issue (6): 829-840.DOI: 10.11755/j.issn.1006-7639(2023)-06-0829
• El Niño and Drought • Previous Articles Next Articles
HAO Lisheng(), HE Liye, MA Ning, HAO Yuqian
Received:
2023-07-21
Revised:
2023-09-01
Online:
2023-12-31
Published:
2024-01-03
作者简介:
郝立生(1966—),男,博士,研究员,主要从事华北旱涝演变机理及预测技术研究。Email:hls54515@163.com。
基金资助:
CLC Number:
HAO Lisheng, HE Liye, MA Ning, HAO Yuqian. Relationship between interannual variability of El Niño events and summer droughts in North China[J]. Journal of Arid Meteorology, 2023, 41(6): 829-840.
郝立生, 何丽烨, 马宁, 郝钰茜. 厄尔尼诺事件年际变化与我国华北夏季干旱的关系[J]. 干旱气象, 2023, 41(6): 829-840.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ghqx.org.cn/EN/10.11755/j.issn.1006-7639(2023)-06-0829
Fig.2 Spatial distribution of percentage of summer precipitation variability (standard deviation) in North China from 1961 to 2022 (Unit: %) (The box area is for North China, the same as below)
Fig.3 Monthly mean precipitation and its absolute variability (mean-square deviation) (a) and yearly variation of summer precipitation (b) in North China from 1961 to 2022
Fig.4 The changes of Niño3 index in 24 months before and after the year with less (a) and more (b) precipitation in summer in North China from 1961 to 2022
Fig.5 Spatial distribution of correlation coefficients between summer precipitation in North China during 1961-2022 and summer Niño3 index in the previous year (a) and the current year (b) (The dotted areas are values passing the significance test at α=0.05, the same as below)
Fig.6 Spatial distributions of climatological mean geopotential height (isolines) and height anomaly (the color shaded) at 200 hPa (a) and 500 hPa (b) (Unit: dagpm) and horizontal wind speed anomalies at 200 hPa (a) and 850 hPa (c) (arrow vectors, Unit: m·s-1) in summer drought years in North China during 1961-2022 (The abnormal values are reconstructed by regression upon the precipitation series, the dotted areas and thick black arrows are values passing significance test at α=0.05, the same as below)
Fig.7 Spatial distributions of seasonal evolution of tropical sea surface temperature in the previous year (the left) and the current year (the right) in summer drought years in North China from 1961 to 2022 (Unit: ℃) (The abnormal values are reconstructed by regression upon the precipitation series)
Fig.8 The variation of time coefficients of the first four principal modes of the seasonal evolution of sea surface temperature and anomalies of summer precipitation in North China from 1961 to 2022
Fig.9 Spatial distributions of the main mode EOF3 of the seasonal evolution of sea surface temperature in the previous year (the left) and the current year (the right) (Unit: ℃) (The anomalous values are the result of regression reconstruction upon PC3)
Fig.10 Spatial distribution of summer precipitation anomaly percentage corresponding to the main mode EOF1 (a), EOF2 (b), EOF3 (c), EOF4 (d) of the seasonal evolution of sea surface temperature from 1961 to 2022(Unit: %) (The anomalous values are the result of regression reconstruction upon PCs)
Fig.11 Spatial distributions of climatological mean geopotential height (isolines) and height anomaly (the color shaded) at 200 hPa (a) and 500 hPa (b) (Unit: dagpm) and horizontal wind speed anomalies at 200 hPa (a) and 850 hPa (c) (arrow vectors, Unit: m·s-1) corresponding to EOF3 in summers during 1961-2022 in North China (The anomalous are the result of regression reconstruction upon the time coefficient PC3 of the EOF3)
[1] | 陈大可, 连涛, 2020. 厄尔尼诺-南方涛动研究新进展[J]. 科学通报, 65(35): 4 001-4 003. |
[2] | 陈君杰, 孙即霖, 2023. 异常对流经度差异对El Niño影响区域气候的分析[J]. 大气科学, 47(2): 453-469. |
[3] | 褚颖佳, 郭飞燕, 尹承美, 等, 2020. 东部型和中部型厄尔尼诺事件对山东夏季降水的不同影响[J]. 海洋气象学报, 40(4): 97-104. |
[4] | 丁一汇, 朱定真, 石曙卫, 等, 2013. 中国自然灾害要览(上卷)[M]. 北京: 北京大学出版社. |
[5] | 范广洲, 吕世华, 程国栋, 2001. 华北地区夏季水资源特征分析及其对气候变化的响应(I): 近40年华北地区夏季水资源特征分析[J]. 高原气象, 20(4): 421-428. |
[6] | 符淙斌, 1987. 埃尔尼诺/南方涛动现象与年际气候变化[J]. 大气科学, 11(2): 209-220. |
[7] | 符淙斌, 安芷生, 郭维栋, 2005. 我国生存环境演变和北方干旱化趋势预测研究(Ⅰ): 主要研究成果[J]. 地球科学进展, 20(11): 1 157-1 167. |
[8] | 高铭祥, 杨双艳, 王强, 等, 2023. 两类厄尔尼诺背景下MJO对太平洋阻塞频率的调节作用[J]. 大气科学, 47(2): 487-501. |
[9] | 韩作强, 张献志, 芦璐, 等, 2019. 厄尔尼诺现象对黄河流域汛期降水的影响分析[J]. 气象与环境科学, 42(1): 73-78. |
[10] | 郝立生, 丁一汇, 康文英, 等, 2012. 印度洋海温变化与华北夏季降水减少的关系[J]. 气候变化研究快报, 1(1): 13-21. |
[11] | 郝立生, 侯威, 2018. 华北夏季降水变化及预测技术研究[M]. 北京: 气象出版社. |
[12] | 郝立生, 陆维松, 2006. 热带海温异常影响华北夏季降水的机制研究[J]. 干旱气象, 24(2): 5-11. |
[13] | 黄荣辉, 陈际龙, 周连童, 等, 2003. 关于中国重大气候灾害与东亚气候系统之间关系的研究[J]. 大气科学, 27(4): 770-788. |
[14] | 黄荣辉, 徐予红, 周连童, 1999. 我国夏季降水的年代际变化及华北干旱化趋势[J]. 高原气象, 18(4): 465-476. |
[15] | 黄艳松, 宋金宝, 2011. NCEP再分析资料和浮标观测资料计算海气热通量的比较[J]. 海洋科学, 2011, 35(12): 113-120. |
[16] | 孔铃涵, 朱锦涛, 赵树云, 等, 2023. 春季厄尔尼诺快速衰减对华北夏季降水的影响[J]. 大气科学学报, 46(4): 517-531. |
[17] | 李瑞青, 宋桂英, 迎春, 2021. 近60 a内蒙古夏季气候变化特征及其对厄尔尼诺的响应[J]. 干旱区研究, 38(6): 1 601-1 613. |
[18] | 陆日宇, 2005. 华北汛期降水量年际变化与赤道东太平洋海温[J]. 科学通报, 50(11): 1 131-1 135. |
[19] | 罗连升, 吴蓉, 邓汗青, 等, 2023. 安徽春季连阴雨与不同类型厄尔尼诺/拉尼娜衰减年的关系[J]. 暴雨灾害, 42(2): 170-178. |
[20] | 罗婷, 李丽平, 王远清, 2019. 两次超强厄尔尼诺事件海温异常与次年中国东部夏季降水特征对比[J]. 大气科学学报, 42(5): 715-724. |
[21] | 罗晓玲, 2020. 石羊河流域干旱气候对ENSO事件的响应及预测分析[J]. 沙漠与绿洲气象, 14(4): 46-51. |
[22] | 彭艳玉, 郜倩倩, 刘煜, 2023. 厄尔尼诺对中国东部季风区夏季不同持续性降水的影响[J]. 气象学报, 81(3): 375-392. |
[23] | 邱广元, 1987. 什么是“厄尔尼诺”现象?[J]. 世界农业, (7): 25. |
[24] | 冉令坤, 李舒文, 周玉淑, 等, 2021. 2021年河南“7.20”极端暴雨动力、热力和水汽特征观测分析[J]. 大气科学, 45(6): 1 366-1 383. |
[25] | 田红, 程智, 谢五三, 等, 2020. 2020年安徽梅雨异常特征及预测前兆信号分析[J]. 暴雨灾害, 39(6): 564-570. |
[26] |
王婷, 李双双, 延军平, 等, 2022. 基于ENSO发展过程的中国夏季降水时空变化特征[J]. 自然资源学报, 37(3): 803-815.
DOI |
[27] |
王莺, 张强, 王劲松, 等, 2022. 21世纪以来干旱研究的若干新进展与展望[J]. 干旱气象, 40(4): 549-566.
DOI |
[28] | 韦志刚, 董文杰, 范丽军, 1999. 80年代以来华北地区气候和水量变化的分析研究[J]. 高原气象, 18(4): 525-534. |
[29] | 吴萍, 丁一汇, 柳艳菊, 2017. 厄尔尼诺事件对中国夏季水汽输送和降水分布影响的新研究[J]. 气象学报, 75(3): 371-383. |
[30] | 伍红雨, 吴遥, 2018. 不同类型和强度的厄尔尼诺事件对次年华南前汛期降水的可能影响[J]. 大气科学, 42(5): 1 081-1 095. |
[31] | 徐影, 丁一汇, 赵宗慈, 2001. 美国NCEP/NCAR近50年全球再分析资料在我国气候变化研究中可信度的初步分析[J]. 应用气象学报, 12(3): 337-347. |
[32] | 余荣, 翟盘茂, 2018. 厄尔尼诺对长江中下游地区夏季持续性降水结构的影响及其可能机理[J]. 气象学报, 76(3): 408-419. |
[33] | 张强, 姚玉璧, 李耀辉, 等, 2020. 中国干旱事件成因和变化规律的研究进展与展望[J]. 气象学报, 78(3): 500-521. |
[34] | 周娟, 左志燕, 容新尧, 2020. 中国东部土壤湿度异常和厄尔尼诺对中国东部夏季降水的作用比较[J]. 中国科学: 地球科学, 50(1): 149-160. |
[35] | CHIEW F H S, PIECHOTA T C, DRACUP J A, et al, 1998. El Nino/Southern Oscillation and Australian rainfall, streamflow and drought: links and potential for forecasting[J]. Journal of Hydrology, 204(1-4): 138-149. |
[36] | DAI A, WIGLEY T M L, 2000. Global patterns of ENSO-induced precipitation[J]. Geophysical Research Letters, 27(9): 1 283-1 286. |
[37] | DETTINGER M D, DIAZ H F, 2000. Global characteristics of stream flow seasonality and variability[J]. Journal of Hydrometeorology, 1(4): 289-310. |
[38] | LI Yang, HOU Zhengyang, ZHANG Liqiang, et al, 2023. Rapid expansion of wetlands on the Central Tibetan Plateau by global warming and El Niño[J]. Science Bulletin, 68(5): 485-488. |
[39] | Lü A, JIA S, ZHU W, et al, 2011. El Niño-Southern Oscillation and water resources in the headwaters region of the Yellow River: links and potential for forecasting[J]. Hydrology and Earth System Sciences, 15(4): 1 273-1 281. |
[40] | LUO Yali, ZHANG Jiahua, YU Miao, et al, 2023. On the influences of urbanization on the extreme rainfall over Zhengzhou on 20 July 2021: a convection-permitting ensemble modeling study[J]. Advances of Atmosphere Science, 40(3): 393-409. |
[41] |
MAXX D, BARRY N H, 1995. ENSO and disaster: droughts, floods and El Niño/Southern Oscillation warm events[J]. Disasters, 19(3): 181-193.
PMID |
[42] | NATASHA S, CARLOS P C D, MART C M G, et al, 2022. Investigating the response of hydrological processes to El Niño events using a 100-year dataset from the western Pacific Ocean[J]. Journal of Hydrology: Regional Studies, 42, 101174. https://doi.org/10.1016/j.ejrh.2022.101174 |
[43] | PHILANDER S G H, 1985. El Niño and La Niña[J]. Journal of the Atmospheric Sciences, 42(23): 2 652-2 662. |
[44] | RICHARD Y, FAUCHEREAU N, POCCARD I, et al, 2001. 20th century droughts in Southern Africa: spatial and temporal variability, teleconnections with oceanic and atmospheric conditions[J]. International Journal of Climatology, 21(7): 873-885. |
[45] | JAE H R, MARK D S, JOHN D L, et al, 2010. Potential extents for ENSO-driven hydrologic drought forecasts in the United States[J]. Climatic Change, 101(3): 575-597. |
[46] | VELDKAMP T I E, EISNER S, WADA Y, et al, 2015. Sensitivity of water scarcity events to ENSO-driven climate variability at the global scale[J]. Hydrology and Earth System Sciences, 19(10): 4 081-4 098. |
[47] | WANG Bin, AN Soon-II, 2005. A method for detecting season-dependent modes of climate variability: S-EOF analysis[J]. Geophysical Research Letters, 32(15), L15710. https://doi.org/10.1029/2005GL022709 |
[48] | WANG Bin, YANG Jing, ZHOU Tianjun, et al, 2008. Interdecadal changes in the major modes of Asian-Australian monsoon variability: strengthening relationship with ENSO since the late 1970s[J]. Journal of Climate, 21(8): 1 771-1 789. |
[49] | XIANG Bo, ZHOU Jie, LI Yonghua, 2020. Asymmetric relationships between El Niño/La Niña and floods/droughts in the following summer over Chongqing, China[J]. Atmospheric and Oceanic Science Letters, 13(2):171-178. |
[50] | ZHANG Linyan, YANG Xiaoli, REN Liliang, et al, 2022. Dynamic multi-dimensional identification of Yunnan droughts and its seasonal scale linkages to the El Niño-Southern Oscillation[J]. Journal of Hydrology: Regional Studies, 42, 101128. https://doi.org/10.1016/j.ejrh.2022.101128 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018 Journal of Arid Meteorology
Tel: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com