Journal of Arid Meteorology ›› 2025, Vol. 43 ›› Issue (6): 953-966.DOI: 10.11755/j.issn.1006-7639-2025-06-0953
• Articles • Previous Articles Next Articles
ZHOU Yanyan1(
), WANG Ying1,2(
), WEI Ruirui1, ZHAO Tianyi1
Received:2025-07-08
Revised:2025-09-30
Online:2025-12-31
Published:2026-01-19
通讯作者:
王颖
作者简介:周燕艳(2001—),女,广西南宁人,硕士生,主要从事陆气相互作用研究。E-mail: zhyanyan2023@lzu.edu.cn。
CLC Number:
ZHOU Yanyan, WANG Ying, WEI Ruirui, ZHAO Tianyi. Sensitivity of land surface schemes to snow cover in the WRF model[J]. Journal of Arid Meteorology, 2025, 43(6): 953-966.
周燕艳, 王颖, 魏瑞瑞, 赵天一. WRF模式的陆面过程方案对积雪的敏感性分析[J]. 干旱气象, 2025, 43(6): 953-966.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ghqx.org.cn/EN/10.11755/j.issn.1006-7639-2025-06-0953
Fig.1 WRF four-domain nested grid configuration (a) and terrain elevation (the color shaded, Unit: m) and locations of four meteorological towers (black dots) in the innermost D04 (b)
Fig.2 The 500 hPa geopotential height (blue contour lines, Unit: dagpm) and temperature (red contour lines, Unit: ℃) at 08:00 on 19 February 2014 during snow-covered period (a) and 08:00 on 13 January 2014 during snow-free period (b) (The red star represents the location of Lanzhou New Area)
Fig.3 MODIS true-color images showing the D04 region with snow cover (a) at 08:00 on 19 February 2014 and without snow cover at 08:00 on 13 January 2014 (b)
Fig.4 Scatter plot of T2 and T70 from various land surface schemes against observations during snow-covered period (* indicates significance at the 95% confidence level, the underlined numbers represent the optimal values. The same as below)
Fig.5 Diurnal variations of WS10 and WS70 observed and simulated by four land surface schemes at four meteorological towers during snow-covered period
Fig.6 Wind roses diagrams of the 10-m and 70-m observations from each meteorological tower, together with four land surface schemes during snow-covered period
Fig.9 Wind roses diagrams of the 10-m and 70-m observations from each meteorological tower, together with four meteorological towers during snow-free period
Fig.10 Normalized Taylor diagrams for T2, T70, WS10, and WS70 from four land surface schemes at four meteorological towers during snow-covered and snow-free periods
| [1] | 陈海山, 杜新观, 孙悦, 2022. 陆面过程与天气研究[J]. 地学前缘, 29(5):382-400. |
| [2] | 姜琪, 罗斯琼, 李明, 2022. 不同初始场及陆面方案对青藏高原中东部积雪消融过程的模拟研究[J]. 高原气象, 41(2):430-443. |
| [3] | 李文静, 罗斯琼, 郝晓华, 等, 2021. 青藏高原东部不同季节积雪过程对地表能量和土壤水热影响的观测研究[J]. 高原气象, 40(3):455-471. |
| [4] | 刘晓东, 1989. 冰雪变化对大气环流和天气气候的影响[J]. 地球科学进展, 4(6):53-58. |
| [5] | 卢冰, 王薇, 杨扬, 等, 2019. WRF中土壤图及参数表的更新对华北夏季预报的影响研究[J]. 气象学报, 77(6):1028-1 040. |
| [6] | 鲁峻岑, 张小玲, 王安怡, 等, 2023. 冬季局地环流对成都地区大气污染的影响[J]. 高原山地气象研究, 43(4):91-100. |
| [7] | 乔娟, 张强, 张杰, 2008. 非均匀下垫面陆面过程参数化问题研究进展[J]. 干旱气象, 26(1):73-77. |
| [8] | 任余龙, 张铁军, 柳媛普, 等, 2020. 夏季风过渡区下垫面非均匀性对一次暴雨影响的数值模拟[J]. 干旱气象, 38(5):755-763. |
| [9] | 孙昭萱, 张强, 王胜, 2009. 土壤水热耦合模型研究进展[J]. 干旱气象, 27(4):373-380. |
| [10] | 王升第, 曹斌, 郝建盛, 等, 2023. 新疆季节性积雪对地表温度的影响[J]. 冰川冻土, 45(2):435-445. |
| [11] | 温晓培, 吴炜, 李昌义, 等, 2022. 土地利用资料的更新对四川盆地高温天气数值模拟的影响[J]. 干旱气象, 40(5):868-878. |
| [12] | 吴统文, 钱正安, 宋敏红, 2004. CCM3模式中LSM积雪方案的改进研究 (Ⅰ):修改方案介绍及其单点试验[J]. 高原气象, 23(4):444-452. |
| [13] | 张海宏, 肖建设, 陈奇, 等, 2019. 青海省甘德两次降雪过程的微气象特征分析[J]. 气象, 45(8):1093-1 103. |
| [14] | 张强, 王蓉, 岳平, 等, 2017. 复杂条件陆-气相互作用研究领域有关科学问题探讨[J]. 气象学报, 75(1):39-56. |
| [15] | 张亚莉, 王清平, 万瑜, 等, 2024. 乌鲁木齐机场2021年首场强浓雾特征及成因分析[J]. 沙漠与绿洲气象, 18(4):83-90. |
| [16] | 赵采玲, 张铁军, 王玮, 等, 2018. 不同土地利用数据对中国西北地区风速模拟的影响[J]. 干旱气象, 36(3):397-404. |
| [17] | BENNETT N D, CROKE B F W, GUARISO G, et al, 2013. Characterising performance of environmental models[J]. Environmental Modelling & Software, 40: 1-20. |
| [18] | CAO X, ZHANG G, CHEN Y L, et al, 2024. Optimization of snow-related processes in Noah-MP land surface model over the mid-latitudes of Asian region[J]. Atmospheric Research, 311: 107711. DOI: 10.1016/j.atmosres.2024.107711. |
| [19] | CLINE D W, 1997. Effect of seasonality of snow accumulation and melt on snow surface energy exchanges at a continental alpine site[J]. Journal of Applied Meteorology and Climatology, 36(1): 32-51. |
| [20] | DE FOY B, MOLINA L T, MOLINA M J, 2006. Satellite-derived land surface parameters for mesoscale modelling of the Mexico City basin[J]. Atmospheric Chemistry and Physics, 6(5): 1 315-1 330. |
| [21] | DI Z H, ZHANG S L, QUAN J P, et al, 2023. Performance of seven land surface schemes in the WRFv4.3 model for simulating precipitation in the record-breaking Meiyu season over the Yangtze-Huaihe River valley in China[J]. GeoHealth, 7(3): e2022GH000757. DOI: 10.1029/2022GH000757. |
| [22] | DUDHIA J, 1996. A Multi-Layer Soil Temperature Model for MM5[C]// Proceedings of the Sixth PSU/NCAR Mesoscale Model Users’ Workshop. Boulder: National Center for Atmospheric Research: 22-24. |
| [23] | GILLIAM R C, PLEIM J E, 2010. Performance assessment of new land surface and planetary boundary layer physics in the WRF-ARW[J]. Journal of Applied Meteorology and Climatology, 49(4): 760-774. |
| [24] | MENG X H, LÜ S H, ZHANG T T, et al, 2009. Numerical simulations of the atmospheric and land conditions over the Jinta oasis in northwestern China with satellite-derived land surface parameters[J]. Journal of Geophysical Research: Atmospheres, 114(D6). DOI: 10.1029/2008JD010360. |
| [25] | MOTT R, DANIELS M, LEHNING M, 2015. Atmospheric flow development and associated changes in turbulent sensible heat flux over a patchy mountain snow cover[J]. Journal of Hydrometeorology, 16(3): 1 315-1 340. |
| [26] | MOTT R, SCHLÖGL S, DIRKS L, et al, 2017. Impact of extreme land surface heterogeneity on micrometeorology over spring snow cover[J]. Journal of Hydrometeorology, 18(10): 2 705-2 722. |
| [27] | NIU G Y, YANG Z L, 2007. An observation-based formulation of snow cover fraction and its evaluation over large North American river basins[J]. Journal of Geophysical Research: Atmospheres, 112(D21): 2007JD008674. DOI: 10.1029/2007JD008674. |
| [28] | NIU G Y, YANG Z L, MITCHELL K E, et al, 2011. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements[J]. Journal of Geophysical Research: Atmospheres, 116(D12): D12109. DOI:10.1029/2010JD015140. |
| [29] | PARRA R, 2023. Assessment of land surface schemes from the WRF-chem for atmospheric modeling in the Andean Region of Ecuador[J]. Atmosphere, 14(3): 508. DOI:10.3390/atmos14030508. |
| [30] | POWERS J G, KLEMP J B, SKAMAROCK W C, et al, 2017. The weather research and forecasting model: Overview, system efforts, and future directions[J]. Bulletin of the American Meteorological Society, 98(8): 1 717-1 737. |
| [31] | ROMÁN-CASCÓN C, LOTHON M, LOHOU F, et al, 2021. Surface representation impacts on turbulent heat fluxes in the Weather Research and Forecasting (WRF) model (v.4.1.3)[J]. Geoscientific Model Development, 14(6): 3 939-3 967. |
| [32] | SCHMIDLI J, BÖING S, FUHRER O, 2018. Accuracy of simulated diurnal valley winds in the Swiss Alps: Influence of grid resolution, topography filtering, and land surface datasets[J]. Atmosphere, 9(5): 196. DOI:10.3390/atmos9050196. |
| [33] | SEGAL M, GARRATT J R, PIELKE R A, et al, 1991. Scaling and numerical model evaluation of snow-cover effects on the generation and modification of daytime mesoscale circulations[J]. Journal of the Atmospheric Sciences, 48(8): 1 024-1 042. |
| [34] | SHANGGUAN W, DAI Y J, DUAN Q Y, et al, 2014. A global soil data set for earth system modeling[J]. Journal of Advances in Modeling Earth Systems, 6(1): 249-263. |
| [35] | SKAMAROCK W C, KLEMP J B, DUDHIA J, et al, 2019. A description of the advanced research WRF model version 4[R]. Boulder: National Center for Atmospheric Research, NCAR/TN-556+STR. |
| [36] | SMIRNOVA T G, BROWN J M, BENJAMIN S G, et al, 2016. Modifications to the rapid update cycle land surface model (RUC LSM) available in the weather research and forecasting (WRF) model[J]. Monthly Weather Review, 144(5): 1 851-1 865. |
| [37] | STULL R B, 1988. Mean boundary layer characteristics[M]// An introduction to boundary layer meteorology. Dordrecht: Springer Netherlands: 1-27. |
| [38] | SUN S, SHI C X, LIANG X, et al, 2023. The evaluation of snow depth simulated by different land surface models in China based on station observations[J]. Sustainability, 15(14): 11284. DOI: 10.3390/su151411284. |
| [39] | TAYLOR K E, 2001. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research: Atmospheres, 106(D7): 7 183-7 192. |
| [40] | WALSH J E, 1984. Snow cover and atmospheric variability: Changes in the snow covering the earth’s surface affect both daily weather and long-term climate[J]. American Scientist, 72(1): 50-57. |
| [41] | XIA G, SMIRNOVA T G, TURNER D D, et al, 2023. Sensitivity of near-surface variables in the RUC land surface model in the weather research and forecasting model[R]. Golden, CO: National Renewable Energy Laboratory. |
| [42] | ZHANG B, XIONG W, MA M Y, et al, 2022. Super-resolution reconstruction of a 3 arc-second global DEM dataset[J]. Science Bulletin, 67(24): 2 526-2 530. |
| [43] | ZHANG H L, PU Z X, ZHANG X B, 2013. Examination of errors in near-surface temperature and wind from WRF numerical simulations in regions of complex terrain[J]. Weather and Forecasting, 28(3): 893-914. |
| [44] | ZHANG T J, 2005. Influence of the seasonal snow cover on the ground thermal regime: An overview[J]. Reviews of Geophysics, 43(4): 2004RG000157. DOI:10.1029/2004RG000157. |
| [45] | ZHANG X, LIU L Y, CHEN X D, et al, 2021. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery[J]. Earth System Science Data, 13(6): 2 753-2 776. |
| [46] | ZHANG Y, YAN D D, WEN X H, et al, 2020. Comparative analysis of the meteorological elements simulated by different land surface process schemes in the WRF model in the Yellow River source region[J]. Theoretical and Applied Climatology, 139(1): 145-162. |
| [1] | SUN Zichuan, ZHANG Qingyan, CHEN Ying, YUAN Benhe, WAN Cong, OUYANG Xin. Local circulation study of a sudden rainfall process in mountainous area of Mianyang, Sichuan Province [J]. Journal of Arid Meteorology, 2025, 43(2): 254-264. |
| [2] | YIN Qingqing, REN Lu, TIAN Wenshou, WANG Tao, YANG Jingyi, ZHANG Jiankai. Satellite observation and numerical simulation of gravity wave excited by a convection over North China [J]. Journal of Arid Meteorology, 2022, 40(3): 444-455. |
| [3] | HAN Xiantao, TONG Tong, JIANG Jiayu, WANG Junxiu, ZHAO Yiyong. Meteorological cause of haze weather in Hohhot in January 2020 [J]. Journal of Arid Meteorology, 2022, 40(2): 275-283. |
| [4] | DONG Junling, LIU Chao, SU Aifang. Impact of Urbanization on a Torrential Rain Process in Zhengzhou Region [J]. Journal of Arid Meteorology, 2019, 37(6): 922-932. |
| [5] | LI Danhua1,2, CHEN Shiqiang2, LU Guoyang1, LIU Liwei1. Numerical Simulation Study of Snow Cover Processes’ Influence on Meteorological Elements near Surface in Maqu [J]. Journal of Arid Meteorology, 2018, 36(3): 415-. |
| [6] | XI Shuang,ZHANG Zhifu. Spatial and Temporal Analysis of Snow Cover in China in Recent 50 Years [J]. Journal of Arid Meteorology, 2013, 31(3): 451-456. |
| [7] | . Comparative Analysis of Mountain - valley Wind Circulation Characteristics over Semi - arid Areas Nearby Lanzhou [J]. Journal of Arid Meteorology, 2012, 30(2): 169-177. |
| [8] | WANG Gong-Jun, LIU Pei-Ning, DING De-Hua, LIU Wen-Jing, BO Wei-Yu. C limate Background and C irculation Characteristic of Severe ConvectiveW eather Process over theM ain Landing Field of Shenzhou No.7Space Ship [J]. J4, 2009, 27(3): 232-238. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
©2018 Journal of Arid Meteorology
Tel: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com