Journal of Arid Meteorology ›› 2024, Vol. 42 ›› Issue (6): 900-909.DOI: 10.11755/j.issn.1006-7639-2024-06-0900
• Articles • Previous Articles Next Articles
WANG Simin(), ZHAO Guixiang(
), ZHAO Yu, ZHAO Jianfeng, SHEN Liwen
Received:
2024-02-23
Revised:
2024-05-11
Online:
2024-12-31
Published:
2025-01-15
通讯作者:
赵桂香(1965—),女,硕士,正高级工程师,从事中小尺度数值诊断和灾害性天气预报技术研究。E-mail:liyun0123@126.com。
作者简介:
王思慜(1985—),女,硕士,高级工程师,从事灾害性天气预报技术研究。E-mail:280105280@qq.com。
基金资助:
CLC Number:
WANG Simin, ZHAO Guixiang, ZHAO Yu, ZHAO Jianfeng, SHEN Liwen. Comparative analysis of two extreme snowstorms in Shanxi Province[J]. Journal of Arid Meteorology, 2024, 42(6): 900-909.
王思慜, 赵桂香, 赵瑜, 赵建峰, 申李文. 山西省两次极端大暴雪过程对比分析[J]. 干旱气象, 2024, 42(6): 900-909.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ghqx.org.cn/EN/10.11755/j.issn.1006-7639-2024-06-0900
Fig.1 The spatial distribution of accumulated precipitation from 08:00 on February 24 to 08:00 on February 25 (a) and from 08:00 on February 27 to 08:00 on March 1 (b), 2021 (Unit: mm)
降雪过程 | 出现时间 | 是否突破极值 | 降水范围 | 降水性质 | 持续时间 | 相态转换 | 雷电 | 伴随天气 |
---|---|---|---|---|---|---|---|---|
过程Ⅰ | 2月下旬 | 是 | 山西南部 | 对流 | 8~15 h | 快 | 有 | 雾 |
过程Ⅱ | 2月下旬 | 是 | 山西全省 | 混合 | 27~32 h | 慢 | 有 | 雾 |
Tab.1 Comparison of the characteristics of the two snowfall processes
降雪过程 | 出现时间 | 是否突破极值 | 降水范围 | 降水性质 | 持续时间 | 相态转换 | 雷电 | 伴随天气 |
---|---|---|---|---|---|---|---|---|
过程Ⅰ | 2月下旬 | 是 | 山西南部 | 对流 | 8~15 h | 快 | 有 | 雾 |
过程Ⅱ | 2月下旬 | 是 | 山西全省 | 混合 | 27~32 h | 慢 | 有 | 雾 |
Fig.2 The 500 hPa geopotential height field (black solid lines, Unit: dagpm) and its standardized anomaly field (the color shaded) (a), sea-level pressure field (black solid lines, Unit: hPa) and its standardized anomaly field (the color shaded) (b) at 08:00 on February 24, 2021 (Brown solid lines represent trough lines, the letters “D” and “G” denote the positions of low and high pressure centers respectively, and the area enclosed by the red solid line is Shanxi Province, the same as below)
Fig.3 The 500 hPa height field (black solid lines, Unit: dagpm) and its standardized anomaly field (the color shaded) (a), sea-level pressure field (black solid lines, Unit: hPa) and its standardized anomaly field (the color shaded) (b) at 14:00 on February 27, 2021
Fig.4 The longitude-height sections of the pseudo-equivalent potential temperature (black solid lines, Unit: K),wet baroclinic symmetric instability (the grey shaded, Unit: 10-6 m2·s-1·K·kg-1) and wind field (wind vectors, Unit: m·s-1) along 35.8°N at 08:00 on February 24 (a) and along 37.9°N at 14:00 on February 27 (b), 2021 (the black triangle represents the longitude of the center of the snowstorm)
Fig.5 The black body temperature on infrared cloud images (a, b) and composite radar reflectivity factors (c, d) at 16:00 (a), 16:30 (c) on February 24, 2021 and 16:00 (b), 16:30 (d) on February 28, 2021
Fig.6 The time-height sections of specific humidity (solid black lines, Unit: g·kg-1), horizontal water vapor flux (the gray shaded area), and meridional vertical water vapor flux (arrows) (Unit: 10-5 kg·m-1·hPa-1·s-1) along the precipitation centers of Process Ⅰ (112.9°E, 35.8°N) (a) and Process Ⅱ (113.7°E, 37.9°N) (b)
Fig.7 The time-height sections of the pseudo-equivalent potential temperature (solid black lines, Unit: K) and vertical velocity (the gray shaded, Unit: Pa·s-1) along the precipitation centers of the Process Ⅰ (112.9°E, 35.8°N) (a) and the Process Ⅱ (113.7°E, 37.9°N) (b)
Fig.8 The evolution of maximum ascending velocity under 500 hPa during the Process Ⅰ (a) and the Process Ⅱ (b) (the gray box represents the period of snowfall)
Fig.9 The time-height sections of temperature (red lines, Unit: ℃), horizontal wind field (wind vectors, Unit: m·s-1), and relative humidity (the color shaded, Unit: %) at Gaoping Station (112.9°E, 35.8°N) from 23 to 25 February (a) and from 27 February to 1 March (b), 2021 (Between the two vertical lines is the precipitation period)
[1] | 杜佳, 杨成芳, 戴翼, 等, 2019. 北京地区4月一次罕见暴雪的形成机制分析[J]. 气象, 45(10):1363-1 374 |
[2] |
郭英香, 冯晓莉, 刘畅, 等, 2023. 1961-2021年青藏高原前后冬强降雪特征分析[J]. 干旱气象, 41(5): 723-733.
DOI |
[3] | 胡宁, 符娇兰, 孙军, 等, 2021. 北京一次冬季极端降水过程中相态转换预报的误差分析[J]. 气象学报, 79(2): 328-339. |
[4] | 胡鹏, 蔡哲, 张永靖, 等, 2015. 一次伴有雷暴的暴雪天气成因机理分析[J]. 气象科学, 35(2): 210-215. |
[5] | 李典南, 许东蓓, 苟尚, 等, 2019. 甘肃中部一次冷锋后高架雷暴天气过程综合诊断[J]. 干旱气象, 37(5): 809-816. |
[6] | 孟雪峰, 孙永刚, 霍志丽, 等, 2022. 内蒙古一次极端暴雪事件中冻雨成因分析[J]. 沙漠与绿洲气象, 16(4): 22-30. |
[7] | 任伟, 任燕, 全林生, 等, 2024. 山东西北部一次极端暴雪的动力和热力特征[J]. 陕西气象(2): 8-15. |
[8] | 王喜, 王琴, 向阳, 等, 2020. 2018年1月江苏3次致灾暴雪成因对比分析[J]. 海洋气象学报, 40(1): 134-143. |
[9] | 王一颉, 赵桂香, 马严枝, 2019. 降水相态转换机制及积雪深度预报技术研究[J]. 干旱气象, 37(6): 964-971. |
[10] | 徐娟娟, 郝丽, 刘嘉慧敏, 等, 2020. 2018年1月陕西区域性暴雪过程诊断[J]. 干旱气象, 38(1): 117-125. |
[11] |
闫慧, 赵桂香, 张朝明, 等, 2015. 山西中部一次暴雪天气过程分析[J]. 干旱气象, 33(5): 838-844.
DOI |
[12] | 阎琦, 崔锦, 杨青, 2019. 2018年辽宁两次雨转暴雪过程对比分析[J]. 干旱气象, 37(6): 944-953. |
[13] | 杨成芳, 李泽椿, 2018. 近十年中国海效应降雪研究进展[J]. 海洋气象学报, 38(4): 1-10. |
[14] | 杨军, 2014. 2013年卫星遥感应用技术交流论文集[M]. 北京: 气象出版社: 136-150. |
[15] | 杨淑华, 赵桂香, 程海霞, 等, 2021. 山西两类暴雪过程的雷达产品特征比较及降雪量估测[J]. 干旱气象, 39(3): 436-447. |
[16] |
张桂莲, 刘澜波, 孟雪峰, 等, 2022. 冷垫背景下回流暴雪成因与雷达回波特征分析[J]. 干旱气象, 40(3): 500-506.
DOI |
[17] |
张入财, 王君, 陈超辉, 等, 2023. 印度双低涡对青藏高原西部一次典型暴雪过程的影响[J]. 干旱气象, 41(3): 463-473.
DOI |
[18] |
赵桂香, 2014. 诊断分析技术在山西强降雪预报中的应用[J]. 高原气象, 33(3): 838-847.
DOI |
[19] | 赵桂香, 2007. 一次回流与倒槽共同作用产生的暴雪天气分析[J]. 气象, 33(11): 41-48. |
[20] | 赵桂香, 2021. 山西省大雪天气研究[M]. 北京: 气象出版社:172-175. |
[21] | 赵桂香, 程麟生, 李新生, 2007. “04.12”华北大到暴雪过程切变线的动力诊断[J]. 高原气象, 26(3): 615-623. |
[22] | 赵桂香, 杜莉, 范卫东, 等, 2011a. 山西省大雪天气的分析预报[J]. 高原气象, 30(3): 727-738. |
[23] | 赵桂香, 杜莉, 范卫东, 等, 2011b. 一次冷锋倒槽暴风雪过程特征及其成因分析[J]. 高原气象, 30(6):1516-1 525 |
[24] | 赵桂香, 杜莉, 郝孝智, 等, 2013. 3次回流倒槽作用下山西大(暴)雪天气比较分析[J]. 中国农学通报, 29(32): 337-349. |
[25] | CHEN G X, WANG W C, CHENG C T, et al, 2021. Extreme snow events along the coast of the northeast United States: Potential changes due to global warming[J]. Journal of Climate, 34(6): 2 337-2 353 |
[26] | O’GORMAN P A, 2014. Contrasting responses of mean and extreme snowfall to climate change[J]. Nature, 512: 416-418. |
[27] |
QUANTE L, WILLNER S N, MIDDELANIS R, et al, 2021. Regions of intensification of extreme snowfall under future warming[J]. Scientific Reports, 11(1): 16621. DOI: 10.1038/s41598-021-95979-4.
PMID |
[28] | ZHAO Y, FU L, YANG C F, et al, 2020. Case study of a heavy snowstorm associated with an extratropical cyclone featuring a back-bent warm front structure[J]. Atmosphere, 11(12): 1272. DOI: 10.3390/atmos11121272. |
[1] | GUO Yingxiang, FENG Xiaoli, LIU Chang, SHEN Hongyan, CHEN Haicun, LI Moyu. Characteristics of heavy snowfall in the Qinghai-Tibetan Plateau in early and late winter during 1961-2021 [J]. Journal of Arid Meteorology, 2023, 41(5): 723-733. |
[2] | GAO Xingai, ZHU Lingyun, YAN Shiming, PEI Kunning, ZHANG Fengsheng, WANG Shumin, CHENG Pengwei. Spatio-temporal distribution characteristics of greenhouse gases and their influence factors in Linfen with typical high-carbon emission [J]. Journal of Arid Meteorology, 2022, 40(2): 256-265. |
[3] | LI Qinghua, MENG Jie, LI Jinsong, LIU Yueli, CHANG Qing, JIANG Min, GUO Dong. Spatial distribution and division of wire icing thickness under different return periods in Shanxi Province [J]. Journal of Arid Meteorology, 2022, 40(1): 156-165. |
[4] | ANG Shuhua, ZHAO Guixiang, CHENG Haixia, ZHOU Jinhong, LI Laping, LI Xiaozhen, LIU Jieli. Comparison of Radar Products Characteristics and Snowfall Estimation of Two Types of Snowstorms in Shanxi Province [J]. Journal of Arid Meteorology, 2021, 39(3): 436-447. |
[5] | DONG Chunqing, WU Yongli, GUO Yuanyuan, MA Li, MIAO Qing. Application of Classification Indexes and Criterion on Severe Convection Weather in Shanxi Province [J]. Journal of Arid Meteorology, 2021, 39(2): 345-355. |
[6] | WANG Yijie, ZHAO Guixiang, MA Yanzhi. Precipitation Phase Transformation Mechanism and Prediction Technology of Snow Depth [J]. Journal of Arid Meteorology, 2019, 37(6): 964-971. |
[7] | LIU Yaolong, ZHANG Huaming, HUANG Xiaoli, CHANG Yuanyuan, ZHANG Jianxin. Evaluation of the Ice-snow Sports Climate Suitability in Shanxi Province [J]. Journal of Arid Meteorology, 2019, 37(1): 173-179. |
[8] | LI Junxia, LI Peiren, JIN Lijun, LI Yiyu, ZHENG Yu, LIU Zhihong. Remote Sensing of Precipitable Water Vapor Features and Application in Precipitation Analysis by Using Ground-based Microwave Radiometer [J]. Journal of Arid Meteorology, 2017, 35(5): 767-775. |
[9] | CHENG Huhua. Evolution Characteristics of Gravity Wave Parameters in the Process of a Thunderstorm in Northwestern Shanxi [J]. Journal of Arid Meteorology, 2016, 34(5): 811-819. |
[10] | ZHUANG Xiaocui1,2, ZHOU Hongkui3, LI Boyuan4. Forecast Test of T639 Model on Heavy Snowfall in Warm Area of Northern Xinjiang [J]. Journal of Arid Meteorology, 2015, 33(6): 1031-1037. |
[11] | GUO Yuanyuan,DONG Chunqing,MIAO Aimei. Analysis of Correlation Between East Asian Subtropical Summer Monsoon and Summer Precipitation in Shanxi Province [J]. Journal of Arid Meteorology, 2014, 32(1): 32-37. |
[12] | . Influence of Climate Change on Wind Energy Resources in Agriculture and Stock - raising Interlaced Region of Northern China [J]. Journal of Arid Meteorology, 2012, 30(2): 202-2096. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018 Journal of Arid Meteorology
Tel: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com