Journal of Arid Meteorology ›› 2021, Vol. 39 ›› Issue (06): 995-1005.DOI: 10.11755/j.issn.1006-7639(2021)-06-0995
• Articl • Previous Articles Next Articles
HUANG Kailong1,4(), LIN Jinchun2, MA Pan1, HUANG Wenjing2, LU Junxiang2, TANG Xiaoxin3, WANG Shigong1(
)
Received:
2020-04-25
Revised:
2021-01-05
Online:
2021-12-30
Published:
2021-12-31
Contact:
WANG Shigong
黄开龙1,4(), 林锦春2, 马盼1, 黄文静2, 陆俊翔2, 唐小新3, 王式功1(
)
通讯作者:
王式功
作者简介:
黄开龙(1995— ),男,广东汕头人,硕士研究生,研究方向为气象环境与健康. E-mail: huangkl123@126.com。
基金资助:
CLC Number:
HUANG Kailong, LIN Jinchun, MA Pan, HUANG Wenjing, LU Junxiang, TANG Xiaoxin, WANG Shigong. Influence of meteorological factors on number of upper respiratory tract infection visits in Luohu of Shenzhen[J]. Journal of Arid Meteorology, 2021, 39(06): 995-1005.
黄开龙, 林锦春, 马盼, 黄文静, 陆俊翔, 唐小新, 王式功. 气象条件对深圳市罗湖区上呼吸道感染就诊人数的影响[J]. 干旱气象, 2021, 39(06): 995-1005.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ghqx.org.cn/EN/10.11755/j.issn.1006-7639(2021)-06-0995
日平均 气温/ ℃ | 日最高 气温/ ℃ | 日最低 气温/ ℃ | 日平均 相对 湿度/% | 日平均 气压/ hPa | 日平均 风速/ (m·s-1) | 日降水量/ mm | 气温 日较差/ ℃ | 日均 水汽压/ hPa | |
---|---|---|---|---|---|---|---|---|---|
X±s | 23.5±5.5 | 27.1±5.6 | 21.1±5.6 | 75.4±12.6 | 1005.6±6.6 | 1.9±0.8 | 5.3±17.0 | 6.0±2.0 | 23.2±8.3 |
Pmin | 3.5 | 6.5 | 1.7 | 19 | 983.1 | 0.4 | 0 | 0.9 | 2.7 |
P25 | 19.4 | 23.2 | 16.8 | 70 | 1000.8 | 1.4 | 0 | 4.6 | 16.4 |
P50 | 24.8 | 28.4 | 22.5 | 77 | 1005.6 | 1.8 | 0 | 5.9 | 24 |
P75 | 28.2 | 31.7 | 25.9 | 84 | 1010.4 | 2.3 | 1.2 | 7.3 | 31 |
Pmax | 33 | 37 | 29.9 | 100 | 1027.3 | 6.1 | 187.8 | 14 | 38 |
Tab.1 The statistical characteristics of meteorological elements in Shenzhen from 2014 to 2018
日平均 气温/ ℃ | 日最高 气温/ ℃ | 日最低 气温/ ℃ | 日平均 相对 湿度/% | 日平均 气压/ hPa | 日平均 风速/ (m·s-1) | 日降水量/ mm | 气温 日较差/ ℃ | 日均 水汽压/ hPa | |
---|---|---|---|---|---|---|---|---|---|
X±s | 23.5±5.5 | 27.1±5.6 | 21.1±5.6 | 75.4±12.6 | 1005.6±6.6 | 1.9±0.8 | 5.3±17.0 | 6.0±2.0 | 23.2±8.3 |
Pmin | 3.5 | 6.5 | 1.7 | 19 | 983.1 | 0.4 | 0 | 0.9 | 2.7 |
P25 | 19.4 | 23.2 | 16.8 | 70 | 1000.8 | 1.4 | 0 | 4.6 | 16.4 |
P50 | 24.8 | 28.4 | 22.5 | 77 | 1005.6 | 1.8 | 0 | 5.9 | 24 |
P75 | 28.2 | 31.7 | 25.9 | 84 | 1010.4 | 2.3 | 1.2 | 7.3 | 31 |
Pmax | 33 | 37 | 29.9 | 100 | 1027.3 | 6.1 | 187.8 | 14 | 38 |
人群 | X±s | Pmin | P25 | P50 | P75 | Pmax |
---|---|---|---|---|---|---|
总人群 | 764.3±258.5 | 6 | 629 | 741 | 875 | 2792 |
男性 | 391.2±131.9 | 2 | 321 | 379 | 450 | 1384 |
女性 | 373.0±128.8 | 1 | 305 | 361 | 430 | 1408 |
0~18岁 | 231.9±106.2 | 1 | 172 | 219 | 280 | 1047 |
19~59岁 | 470.1±153.7 | 4 | 392 | 455 | 539 | 1546 |
大于60岁 | 62.3±23.0 | 0 | 48 | 60 | 75 | 199 |
Tab.2 Summary statistics of the number of upper respiratory tract infections (URI) visits in Luohu district of Shenzhen from 2014 to 2018
人群 | X±s | Pmin | P25 | P50 | P75 | Pmax |
---|---|---|---|---|---|---|
总人群 | 764.3±258.5 | 6 | 629 | 741 | 875 | 2792 |
男性 | 391.2±131.9 | 2 | 321 | 379 | 450 | 1384 |
女性 | 373.0±128.8 | 1 | 305 | 361 | 430 | 1408 |
0~18岁 | 231.9±106.2 | 1 | 172 | 219 | 280 | 1047 |
19~59岁 | 470.1±153.7 | 4 | 392 | 455 | 539 | 1546 |
大于60岁 | 62.3±23.0 | 0 | 48 | 60 | 75 | 199 |
Fig.3 The distribution of daily average temperature and the number of daily URI visits in Luohu district of Shenzhen during different solar terms from 2014 to 2018
气象要素 | 人 群 | |||||
---|---|---|---|---|---|---|
全人群 | 男性 | 女性 | 0~18岁 | 19~59岁 | ≥60岁 | |
日均气温 | -0.120** | -0.101** | -0.135** | 0.025 | -0.179** | -0.187** |
日最高气温 | -0.117** | -0.098** | -0.132** | 0.024 | -0.175** | -0.182** |
日最低气温 | -0.137** | -0.119** | -0.151** | 0.013 | -0.197** | -0.203** |
日均相对湿度 | -0.131** | -0.129** | -0.131** | -0.032 | -0.158** | -0.159** |
气压 | 0.126** | 0.107** | 0.142** | 0.010 | 0.167** | 0.182** |
日均风速 | -0.020 | -0.021 | -0.018 | -0.067** | 0.010 | 0.013 |
日累计降水 | -0.155** | -0.150** | -0.156** | -0.124** | -0.136** | -0.111** |
日较差 | 0.098** | 0.100** | 0.093** | 0.055* | 0.101** | 0.094** |
水汽压 | -0.147** | -0.128** | -0.161** | 0.009 | -0.205** | -0.212** |
Tab.3 Spearman correlation coefficients between the number of URI visits and major meteorological elements in Luohu district of Shenzhen from 2014 to 2018
气象要素 | 人 群 | |||||
---|---|---|---|---|---|---|
全人群 | 男性 | 女性 | 0~18岁 | 19~59岁 | ≥60岁 | |
日均气温 | -0.120** | -0.101** | -0.135** | 0.025 | -0.179** | -0.187** |
日最高气温 | -0.117** | -0.098** | -0.132** | 0.024 | -0.175** | -0.182** |
日最低气温 | -0.137** | -0.119** | -0.151** | 0.013 | -0.197** | -0.203** |
日均相对湿度 | -0.131** | -0.129** | -0.131** | -0.032 | -0.158** | -0.159** |
气压 | 0.126** | 0.107** | 0.142** | 0.010 | 0.167** | 0.182** |
日均风速 | -0.020 | -0.021 | -0.018 | -0.067** | 0.010 | 0.013 |
日累计降水 | -0.155** | -0.150** | -0.156** | -0.124** | -0.136** | -0.111** |
日较差 | 0.098** | 0.100** | 0.093** | 0.055* | 0.101** | 0.094** |
水汽压 | -0.147** | -0.128** | -0.161** | 0.009 | -0.205** | -0.212** |
Fig.4 Three-dimensional map of exposure-response relationship between temperature and number of URI visits in Luohu district of Shenzhen from 2014 to 2018
不同人群 | RR及其95%置信区间 | ||||
---|---|---|---|---|---|
冷效应(9 ℃) | 热效应(31 ℃) | ||||
累积期4 d | 累积期10 d | 累积期0 d | 累积期4 d | ||
全人群 | 1.06 (0.967~1.162) | 1.239* (1.088~1.411) | 1.014 (0.939~1.095) | 0.947 (0.833~1.076) | |
男性 | 1.057 (0.963~1.16) | 1.241* (1.088~1.415) | 1.007 (0.931~1.088) | 0.946 (0.831~1.077) | |
女性 | 1.063 (0.968~1.167) | 1.238* (1.084~1.413) | 1.022 (0.945~1.104) | 0.948 (0.832~1.079) | |
0~18岁 | 0.883 (0.786~0.993) | 0.801 (0.676~0.949) | 1.076 (0.984~1.176) | 1.014 (0.873~1.177) | |
19~59岁 | 1.130* (1.033~1.235) | 1.409* (1.243~1.598) | 0.986 (0.913~1.065) | 0.915 (0.806~1.04) | |
≥60岁 | 1.115* (1.001~1.242) | 1.597* (1.376~1.854) | 1.000 (0.91~1.098) | 0.938 (0.802~1.097) |
Tab.4 The effects of temperature on the number of URI visits in Luohu district of Shenzhen from 2014 to 2018
不同人群 | RR及其95%置信区间 | ||||
---|---|---|---|---|---|
冷效应(9 ℃) | 热效应(31 ℃) | ||||
累积期4 d | 累积期10 d | 累积期0 d | 累积期4 d | ||
全人群 | 1.06 (0.967~1.162) | 1.239* (1.088~1.411) | 1.014 (0.939~1.095) | 0.947 (0.833~1.076) | |
男性 | 1.057 (0.963~1.16) | 1.241* (1.088~1.415) | 1.007 (0.931~1.088) | 0.946 (0.831~1.077) | |
女性 | 1.063 (0.968~1.167) | 1.238* (1.084~1.413) | 1.022 (0.945~1.104) | 0.948 (0.832~1.079) | |
0~18岁 | 0.883 (0.786~0.993) | 0.801 (0.676~0.949) | 1.076 (0.984~1.176) | 1.014 (0.873~1.177) | |
19~59岁 | 1.130* (1.033~1.235) | 1.409* (1.243~1.598) | 0.986 (0.913~1.065) | 0.915 (0.806~1.04) | |
≥60岁 | 1.115* (1.001~1.242) | 1.597* (1.376~1.854) | 1.000 (0.91~1.098) | 0.938 (0.802~1.097) |
Fig.6 Three-dimensional map of exposure-response relationship between humidity and number of URI visits in Luohu district of Shenzhen from 2014 to 2018
人群 | RR及其95%置信区间 | ||||
---|---|---|---|---|---|
低湿效应(RH=36%) | 高湿效应(RH=96%) | ||||
滞后0 d | 滞后3 d | 滞后2 d | 滞后14 d | ||
全人群 | 1.072* (1.061~1.085) | 1.014* (1.010~1.018) | 1.010* (1.005~1.014) | 1.029* (1.024~1.033) | |
男性 | 1.064* (1.047~1.081) | 1.013* (1.008~1.019) | 1.008* (1.002~1.016) | 1.027* (1.020~1.033) | |
女性 | 1.082* (1.065~1.100) | 1.015* (1.010~1.020) | 1.012* (1.005~1.018) | 1.031* (1.024~1.037) | |
0~18岁 | 1.063* (1.041~1.086) | 0.998 (0.991~1.005) | 1.019* (1.011~1.027) | 1.044* (1.036~1.052) | |
19~60岁 | 1.077* (1.061~1.092) | 1.020* (1.015~1.025) | 1.003 (0.997~1.009) | 1.024* (1.018~1.030) | |
>60岁 | 1.070* (1.029~1.113) | 1.028* (1.014~1.042) | 1.035* (1.018~1.051) | 1.013 (0.997~1.029) |
Tab.5 The effect of humidity on the number of URI visits in Luohu district of Shenzhen from 2014 to 2018
人群 | RR及其95%置信区间 | ||||
---|---|---|---|---|---|
低湿效应(RH=36%) | 高湿效应(RH=96%) | ||||
滞后0 d | 滞后3 d | 滞后2 d | 滞后14 d | ||
全人群 | 1.072* (1.061~1.085) | 1.014* (1.010~1.018) | 1.010* (1.005~1.014) | 1.029* (1.024~1.033) | |
男性 | 1.064* (1.047~1.081) | 1.013* (1.008~1.019) | 1.008* (1.002~1.016) | 1.027* (1.020~1.033) | |
女性 | 1.082* (1.065~1.100) | 1.015* (1.010~1.020) | 1.012* (1.005~1.018) | 1.031* (1.024~1.037) | |
0~18岁 | 1.063* (1.041~1.086) | 0.998 (0.991~1.005) | 1.019* (1.011~1.027) | 1.044* (1.036~1.052) | |
19~60岁 | 1.077* (1.061~1.092) | 1.020* (1.015~1.025) | 1.003 (0.997~1.009) | 1.024* (1.018~1.030) | |
>60岁 | 1.070* (1.029~1.113) | 1.028* (1.014~1.042) | 1.035* (1.018~1.051) | 1.013 (0.997~1.029) |
Fig.8 Three-dimensional map of exposure-response relationship between air pressure (a), wind speed (b) and the number of URI visits in Luohu district of Shenzhen from 2014 to 2018
Fig.9 Relative risk profile of high-pressure (a) and strong wind (b) conditions to the number of URI visits in Luohu district of Shenzhen from 2014 to 2018
[1] | THOMAS F. Climate change and health[J]. Encyclopedia of the Anthropocene, 2018, 2:429-434. |
[2] | MCMICHAEL A J, LINDGREN E. Climate change: present and future risks to health, and necessary responses[J]. Journal of Internal Medicine, 2011, 270(5):410-413. |
[3] | CHRISTOPHER B F, VICENTE R B, MICHAEL D M, el al. Climate change 2014: impacts, adaptation, and vulnerability[M]. Cambridge: Cambridge University Press, 2014. |
[4] |
SUMMERSKILL W, WANG H H, HORTON R. Healthy cities: key to a healthy future in China[J]. The Lancet, 2018, 391(10135):2086-2087.
DOI URL |
[5] | 冯录召. 急性呼吸道感染住院病例病毒性病原谱及流感季节性研究[D]. 北京: 中国疾病预防控制中心, 2014. |
[6] | KUCHAR E, MIŚSKIEWICZ K, SZENBORN L, el al. Respiratory tract infections in children in primary healthcare in Poland[J]. Advances in Experimental Medicine and Biology, 2015, 835:53-59. |
[7] | 王伟, 李晓光, 胥婕. 发热门诊疾病谱及流行性感冒样病例监测意义研究[J]. 中国实用内科杂志, 2015, 35(1):60-62. |
[8] | 高燕. 中国大陆季节性流感活动的时空分布特征[J]. 中华流行病学杂志, 2009, 30(11):1097-1101. |
[9] | 刘文宽. 广州儿童呼吸道病原体流行与气候相关性及呼吸道合胞病毒诊断技术研究[D]. 广州: 广州医科大学, 2017. |
[10] |
SONG X, WANG S, LI T, et al. The impact of heat waves and cold spells on respiratory emergency department visits in Beijing, China[J]. Science of the Total Environment, 2018, 615:1499-1505.
DOI URL |
[11] | 马盼, 黎檀实, 宁贵财, 等. 北京市上呼吸道感染与气象环境关系及其冬季天气分型初探[J]. 兰州大学学报(自然科学版), 2015, 51(1):79-86. |
[12] | 张楠, 刘继锋, 徐军昶, 等. 西安气象因素和舒适度对呼吸系统疾病死亡的影响分析[J]. 科技与创新, 2019(10):8-11. |
[13] | 王洪新. 兰州市气象因素对居民健康影响的研究[D]. 兰州:兰州大学, 2013. |
[14] | 乐满, 王式功, 谢佳君, 等. 环境条件对遵义市呼吸系统疾病的影响及预测研究[J]. 中国环境科学, 2018, 38(11):4334-4347. |
[15] | 张志薇, 王宏斌, 李艳, 等. 诱发南京地区呼吸系统疾病的气象条件与天气类型分析[J]. 兰州大学学报(自然科学版), 2016, 52(6):813-820. |
[16] | 赵琳, 王长科, 李旭东, 等. 海南省不同人群对高温热浪及其影响与适应的感知分析[J]. 干旱气象, 2015, 33(2):310-316. |
[17] |
LIN Y, CHANG C, CHANG S C, et al. Temperature, nitrogen dioxide, circulating respiratory viruses and acute upper respiratory infections among children in Taipei, Taiwan: a population-based study[J]. Environmental Research, 2013, 120:109-118.
DOI URL |
[18] | 李瑞盈, 张一博, 杨佳, 等. 秦皇岛气象因素对儿童下呼吸道疾病就诊人数影响及预测研究[J]. 干旱气象, 2019, 37(3):460-466. |
[19] | 张立杰, 李磊. 近20年深圳城市气候环境研究的进展[J]. 广东气象, 2017, 39(1):48-52. |
[20] | 黄智峰, 刘晓剑, 杨连朋, 等. 深圳市流行性感冒与气象因素的关联性分析[J]. 中华疾病控制杂志, 2017, 21(10):1035-1043. |
[21] |
BAO J, GUO Y, WANG Q, et al. Effects of heat on first-ever strokes and the effect modification of atmospheric pressure: a time-series study in Shenzhen, China[J]. Science of the Total Environment, 2019, 654:1372-1378.
DOI URL |
[22] |
ZHANG Y, YU C, PENG M, et al. The burden of ambient temperature on years of life lost: a multi-community analysis in Hubei, China[J]. Science of the Total Environment, 2018, 621:1491-1498.
DOI URL |
[23] | KIM J, LEE J Y. Synoptic approach to evaluate the effect of temperature on pediatric respiratory disease-related hospitalization in Seoul, Korea[J]. Environmental Research, 2019, 178, DOI: 10.1016/j.envres.2019.108650. |
[24] | 耿迪, 孙宏, 蒋薇, 等. 南京市呼吸系统疾病死亡人数与气象因子的关系[J]. 兰州大学学报(自然科学版), 2015, 51(1):93-97. |
[25] | 卫生部卫生统计信息中心. 国际疾病分类(ICD-10)应用指导手册[M]. 北京: 中国协和医科大学出版社, 2001. |
[26] | 朱乾根, 林锦瑞, 寿绍文. 天气学原理和方法[M]. 北京: 气象出版社, 2007. |
[27] |
HUANG J. A simple accurate formula for calculating saturation vapor pressure of water and ice[J]. Journal of Applied Meteorology and Climatology, 2018, 57(6):1265-1272.
DOI URL |
[28] |
GASPARRINI A. Modeling exposure-lag-response associations with distributed lag non-linear models[J]. Statistics in Medicine, 2014, 33(5):881-899.
DOI URL |
[29] |
GUO Y, GASPARRINI A, ARMSTRONG B, et al. Global variation in the effects of ambient temperature on mortality: a systematic evaluation[J]. Epidemiology, 2014, 25(6):781-789.
DOI URL |
[30] |
GASPARRINI A, GUO Y, HASHIZUME M, et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study[J]. Lancet, 2015, 386:369-375.
DOI URL |
[31] | 乐满, 李海飞, 王式功, 等. 北京市主要天气敏感性疾病发病与流行的24节气特征分析和预报模型构建[J]. 兰州大学学报(自然科学版), 2017, 53(3):394-400. |
[32] | 王敏珍. 中国三个代表城市呼吸系统疾病对主要气象要素的响应及预测研究[D]. 兰州:兰州大学, 2013. |
[33] | 杨高, 周春山, 王少剑. 快速移民城市深圳人口增长的时空特征及模式[J]. 中山大学学报(自然科学版), 2019, 58(2):77-87. |
[34] | 罗小莉, 姚才, 谭金凯. 登陆华南台风的频数及强度变化特征分析[J]. 海洋预报, 2018, 35(4):58-67. |
[35] | 李佳蔚, 魏然, 张安然, 等. 热带气旋与医院门诊呼吸系统疾病日就诊量的病例交叉研究[J]. 山东大学学报(医学版), 2018, 56(8):43-49. |
[36] |
YANG Y, GENG X, LIU X, et al. Association between the incidence of varicella and meteorological conditions in Jinan, Eastern China, 2012-2014[J]. BMC Infectious Diseases, 2016, 16(1):1-8.
DOI URL |
[37] | RIZMIE D, MIRALDO M, ATUN R, et al. The effect of extreme temperature on emergency admissions across vulnerable populations in England: an observational study[J]. The Lancet, 2019, 394(supplement2), DOI: 10.1016/S0140-6736(19)32804-1. |
[38] |
GUO Y, MA Y, JI J, et al. The relationship between extreme temperature and emergency incidences: a time series analysis in Shenzhen, China[J]. Environmental Science and Pollution Research, 2018, 25(36):36 239-36 255.
DOI URL |
[39] | 杨军, 欧春泉, 丁研, 等. 广州市逐日死亡人数与气温关系的时间序列研究[J]. 环境与健康杂志, 2012, 29(2):136-138. |
[40] | 马盼, 王式功, 尚可政, 等. 气象舒适条件对呼吸系统疾病的影响[J]. 中国环境科学, 2018, 38(1):374-382. |
[41] | 王敏珍, 郑山, 王式功, 等. 气温与湿度的交互作用对呼吸系统疾病的影响[J]. 中国环境科学, 2016, 36(2):581-588. |
[42] | 曾洁, 张学海, 林爱华, 等. 2010—2013年浙江省相对湿度对呼吸系统疾病死亡的影响[J]. 中华疾病控制杂志, 2018, 22(5):455-458. |
[43] |
LI Y, XIAO C, LI J, et al. Association between air pollution and upper respiratory tract infection in hospital outpatients aged 0-14 years in Hefei, China: a time series study[J]. Public Health, 2018, 156:92-100.
DOI URL |
[44] | 谷少华, 贾红英, 李萌萌, 等. 济南市空气污染对呼吸系统疾病门诊量的影响[J]. 环境与健康杂志, 2015, 32(2):95-98. |
[1] | YANG Xia, ZHANG Junlan, HUA Ye, XU Tingting, ZHANG Linmei. Diurnal Variation Characteristics of Precipitation in Different Seasons in the Yili River Valley of Xinjiang [J]. Journal of Arid Meteorology, 2021, 39(3): 394-405. |
[2] | HOU Qiong, MIAO Bailing, WANG Yingshun, DONG Chunli. Effects of Water Stress on Soil Moisture in Semiarid Typical Steppe [J]. Journal of Arid Meteorology, 2020, 38(6): 987-993. |
[3] | QI Yajie, CHEN Min, ZHONG Jiqin, FAN Shuiyong, LIU Ruiting, GUO Chunwei. Effect Evaluation of Short-term Forecast of Surface Meteorological Elements by Using RMAPS-ST Coupled Urban Canopy Model in North China [J]. Journal of Arid Meteorology, 2020, 38(5): 859-868. |
[4] | TAN Changrong1, GUO Xiaoning, CHEN Qi, LI Jinhai,YOU Sangjie, MA Xuelian, MA Yuancang, QI Caihong. Study on Surface Ozone Characteristics and Its Influencing Factors in Xining [J]. Journal of Arid Meteorology, 2019, 37(1): 31-39. |
[5] | . Variation Characteristic of Main Meteorological Elements During Summer Sand-Dust Storm Processes in East of Hexi Corridor [J]. Journal of Arid Meteorology, 2017, 35(3): 427-. |
[6] | ZHANG Di1, QU Xiaoli1,2, ZHANG Jinman1, ZHAO Zengbao1, ZHANG Chengwei1. Characteristics Analysis and Forecast of Thick Fog Along the Expressway of Hebei Province in Autumn and Winter [J]. Journal of Arid Meteorology, 2017, 35(1): 51-56. |
[7] | LIU Kang, LI Zhaorong, YANG Ruihong, WANG Yousheng, YIN Chun. Study of Refined Objective Meteorological Element Forecast Method in Villages and Towns in Gansu [J]. Journal of Arid Meteorology, 2015, 33(5): 882-887. |
[8] | WANG Jianpeng, XUE Chunfang, HUANG Shaoni,WANG Dan, PAN Liujie, CHENG Lu. Sensitivity Test of Impact of Urbanization and Anthropogenic Heat on Meteorological Elements in Xi’an [J]. Journal of Arid Meteorology, 2015, 33(3): 434-443. |
[9] | JI Fanhua,LIU Min,WANG Guoqing,XU Juan,HAN Fengjun . Basic Characteristics of the Pacific Subtropical High [J]. Journal of Arid Meteorology, 2014, 32(3): 354-358. |
[10] | . Change Character of Weather Elements at Tazhong of Xinjiang [J]. Journal of Arid Meteorology, 2011, 29(3): 315-321. |
[11] | 沙莎 ,邱新法,何永健. Research and Development of Automatic Weather Station Data System Based on GIS [J]. J4, 2011, 29(3): 372-376. |
[12] | LIU Shi-Xiang, DAO Jian-Gong, ZHANG Tie-Jun, CHANG Da-Cheng, FU Xiao-Gong, ZHANG Jing, SONG Xiu-Ling. Verification and Assessment of Autumn Short - term Objective Forecast of Meteorological Elements in Northwest China [J]. J4, 2010, 28(3): 346-351. |
[13] | LI Xiang-Tu- , HE Qing, AI Li-·Mai-Mai-Chi-Meng, LI Shuai- , LI Gong-Jun, TUN Xin-Ping. Characteristics of w illd Velocity.Humidity and Temperature Profiles near Surface Layer on a Cloudy Day in Spring in the Hinterland of Taklimakan Desert [J]. J4, 2007, 25(2): 22-28. |
[14] |
DONG Xu-Guang, WANG Dong-Cheng, CHEN Yan-Chun, JIAN Chi-Tian.
Observation and Analysis of Low Level Meteorological Elements over Yuanyanghu Region in Ningxia
[J]. J4, 2006, 24(3): 62-67.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018 Journal of Arid Meteorology
Tel: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com