Journal of Arid Meteorology ›› 2022, Vol. 40 ›› Issue (3): 444-455.DOI: 10.11755/j.issn.1006-7639(2022)-03-0444
• Articles • Previous Articles Next Articles
YIN Qingqing(), REN Lu, TIAN Wenshou(
), WANG Tao, YANG Jingyi, ZHANG Jiankai
Received:
2022-03-13
Revised:
2022-04-24
Online:
2022-06-30
Published:
2022-06-28
Contact:
TIAN Wenshou
殷青青(), 任璐, 田文寿(
), 王涛, 杨景怡, 张健恺
通讯作者:
田文寿
作者简介:
殷青青(1997—),女,硕士生,主要从事平流层-对流层相互作用研究. E-mail: yinqq19@lzu.edu.cn。
基金资助:
CLC Number:
YIN Qingqing, REN Lu, TIAN Wenshou, WANG Tao, YANG Jingyi, ZHANG Jiankai. Satellite observation and numerical simulation of gravity wave excited by a convection over North China[J]. Journal of Arid Meteorology, 2022, 40(3): 444-455.
殷青青, 任璐, 田文寿, 王涛, 杨景怡, 张健恺. 华北地区一次对流激发重力波的卫星观测和数值模拟研究[J]. 干旱气象, 2022, 40(3): 444-455.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ghqx.org.cn/EN/10.11755/j.issn.1006-7639(2022)-03-0444
Fig.1 The altitude (color shaded areas, Unit: m) of simulation area by WRF model and double grid domains (rectangle areas), and the location distribution of selected profiles from COSMIC satellite (red dots) (The scanning time of red sampling point 1 (115.60°E, 37.04°N), 2 (117.36°E, 39.83°N) and 3 (118.08°E, 36.56°N) is 12:19 UTC, 18:30 UTC and 12:19 UTC, respectively)
参数化方案 | 设 置 |
---|---|
微物理参数化方案 | WSM3方案[ |
积云参数化方案 | Grell-Devenyi积云对流方案[ |
行星边界层方案 | MYJ方案[ |
长波辐射方案 | RRTM方案[ |
短波辐射方案 | Dudhia方案[ |
近地面层方案 | MYJ Monin-Obukhov方案[ |
陆面过程方案 | Noah 方案[ |
Tab.1 Parameterized scheme setting of WRF model
参数化方案 | 设 置 |
---|---|
微物理参数化方案 | WSM3方案[ |
积云参数化方案 | Grell-Devenyi积云对流方案[ |
行星边界层方案 | MYJ方案[ |
长波辐射方案 | RRTM方案[ |
短波辐射方案 | Dudhia方案[ |
近地面层方案 | MYJ Monin-Obukhov方案[ |
陆面过程方案 | Noah 方案[ |
Fig.2 The spatial distribution of brightness temperature at 8.1 μm (a) and amplitude of brightness temperature disturbance at 4.3 μm (b) from AIRS at 18:05 UTC on 4 August 2010 (Unit: K ) (The value of brightness temperature in regions enclosed by white solid line is less than 220 K)
Fig.3 The profiles of disturbance temperature (a), vertical wavelength (b), potential energy per unit mass (c) and momentum flux (d) at different sampling points from COSMIC satellite on 4 August 2010 (The number 1, 2, 3 represent the sampling points in Fig. 1. the same as below)
Fig.4 The comparison of temperature field (color shaded areas, Unit: K) and horizontal wind field (white arrows, Unit: m·s-1) from ERA5 reanalysis data (a, b, c, d) and WRF simulation (e, f, g, h) at 30 hPa from 00:00 UTC to 18:00 UTC on 4 August 2010(a, e) 00:00 UTC, (b, f) 06:00 UTC, (c, g) 12:00 UTC, (d, h) 18:00 UTC
Fig.5 The comparison of observed TBB from FY-2E satellite (a, b, c, d, e, f) with simulated CTT by WRF model(g, h, i, j, k, l) from 06:00 UTC to 21:00 UTC on 4 August 2010 (Unit: K) (a, g) 06:00 UTC, (b, h) 09:00 UTC, (c, i) 12:00 UTC, (d, j) 15:00 UTC, (e, k) 18:00 UTC, (f, l) 21:00 UTC
Fig.6 The profiles of disturbance temperature (a), vertical wavelength (b), potential energy per unit mass (c)and momentum flux (d) simulated by WRF model at different sampling points on 4 August 2010
Fig.7 The distribution of vertical velocity from WRF model at 30 hPa from 06:00 UTC to 21:00 UT C on 4 August 2010 (Unit: m·s-1) (a) 06:00 UTC, (b) 09:00 UTC, (c) 12:00 UTC, (d)15:00 UTC, (e) 18:00 UTC, (f) 21:00 UTC
Fig.8 The longitude-height distribution of vertical velocity (color shaded areas, Unit: m·s-1) and potential temperature(black solid lines, Unit: K) from WRF model along 38°N from 06:00 UTC to 21:00 UTC on 4 August 2010 (a) 06:00 UTC, (b) 09:00 UTC, (c) 12:00 UTC, (d) 15:00 UTC, (e) 18:00 UTC, (f) 21:00 UTC
Fig.9 The change of vertical wavelength (a, Unit: km), horizontal wavelength (b, Unit: km), potential energy per unit mass (c, Unit: J·kg-1) and momentum flux (d, Unit: Pa) simulated by WRF model with height and time from 00:00 UTC on 4 to 00:00 UTC on 5 August 2010
Fig.10 The change of average potential energy per unit mass (a) and convective intensity (b) with time simulated by WRF model at different heights (The dotted lines are the corresponding time with the peak value of average potential energy per unit mass at different heights, and the red triangle marks the moment for strongest convection)
Fig.11 The longtitude-height section of u component of wind simulated by WRF model along 38°N from 02:00 UTC on 4 to 06:00 UTC on 5 August 2010 (a) 02:00 UTC 4, (b) 06:00 UTC 4, (c) 10:00 UTC 4, (d) 14:00 UTC 4, (e) 18:00 UTC 4,(f) 22: 00 UTC 4, (g) 02:00 UTC 5, (h) 06:00 UTC 5 (The wind speed for black solid line is equal to 0 m·s-1, and the radar reflectivity factor in area enclosed by purple solid line is greater than or equal to 20 dBZ)
[1] |
FRITTS D C. Gravity wave saturation in the middle atmosphere: a review of theory and observations[J]. Reviews of Geophysics and Space Physics, 1984, 22(3): 275-308.
DOI URL |
[2] |
MAYR H G, MENGEL J G, REDDY C A, et al. Variability of the equatorial oscillations induced by gravity wave filtering[J]. Geophysical Research Letters, 1998, 25(14): 2629-2632.
DOI URL |
[3] |
LINDZEN R S. Wave-mean flow interactions in the upper atmosphere[J]. Boundary-Layer Meteorology, 1973, 4(1): 327-343.
DOI URL |
[4] |
LUBKEN F J, FRICKE K H, LANGER M. Noctilucent clouds and the thermal structure near the Arctic mesopause in summer[J]. Journal of Geophysical Research, 1996, 101(D5): 9489-9508.
DOI URL |
[5] | FRITTS D C, ALEXANDER M J. Gravity wave dynamics and effects in the middle atmosphere[J]. Reviews of Geophysics, 2003, 41(1):1-64. |
[6] | TSUDA T, MURAYAMA Y, WIRYOSUMARTO H, et al. Radiosonde observations of equatorial atmosphere dynamics over Indonesia: 2. characteristics of gravity waves[J]. Journal of Geophysical Research, 1994, 99(D5):10 507-10 516. |
[7] | VINCENT R A, ALEXANDER M J. Gravity waves in the tropical lower stratosphere: an observational study of seasonal and interannual variability[J]. Journal of Geophysical Research, 2000, 105(D14): 17 971-17 982. |
[8] |
ALEXANDER M J, HOLTON J R. A model study of zonal forcing in the equatorial stratosphere by convectively induced gravity waves[J]. Journal of the Atmospheric Sciences, 1997, 54(3): 408-419.
DOI URL |
[9] |
STEPHAN C, ALEXANDER M J, RICHTER J H. Characteristics of gravity waves from convection and implications for their parameterization in global circulation models[J]. Journal of the Atmospheric Sciences, 2016, 73(7): 2729-2742.
DOI URL |
[10] |
GONG J, GELLER M A. Vertical fluctuation energy in United States high vertical resolution radiosonde data as an indicator of convective gravity wave sources[J]. Journal of Geophysical Research, 2010, 115: D11110.
DOI URL |
[11] |
WRIGHT C J. Quantifying the global impact of tropical cyclone-associated gravity waves using HIRDLS, MLS, SABER and IBTrACS data[J]. Quarterly Journal of the Royal Meteorological Society, 2019, 145(724): 3023-3039.
DOI URL |
[12] |
WANG L, GELLER M A. Morphology of gravity-wave energy as observed from 4 years (1998-2001) of high vertical resolution U.S. radiosonde data[J]. Journal of Geophysical Research, 2003, 108(D16), 4489.DOI: 10.1029/2002JD002786.
DOI |
[13] | KUMAR K K. VHF radar investigations on the role of mechanical oscillator effect in exciting convectively generated gravity waves[J]. Geophysical Research Letters, 2007, 34: L01803. |
[14] | ESWARAIAH S, RATNAM M V, MURTHY B V K, et al. Short period gravity wave momentum fluxes observed in the tropical troposphere, stratosphere and mesosphere[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2013(105/106): 1-7. |
[15] |
EHARD B, KAIFLER B, KAIFLER N, et al. Evaluation of methods for gravity wave extraction from middle-atmospheric lidar temperature measurements[J]. Atmospheric Measurement Techniques, 2015, 8(11): 4645-4655.
DOI URL |
[16] | SCHREINER W, ROCHEN C, SOKOLOVSKIY S, et al. Estimates of the precision of GPS radio occultation from the COSMIC/FORMOSAT-3 mission[J]. Geophysical Research Letters, 2007, 34: L04808. |
[17] |
FABER A, LLAMEDO P, SCHMIDT T, et al. On the determination of gravity wave momentum flux from GPS radio occultation data[J]. Atmospheric Measurement Techniques, 2013, 6(11): 3169-3180.
DOI URL |
[18] |
ALEXANDER P, DE LA TORRE A, SCHMIDT T, et al. Limb sounders tracking topographic gravity wave activity from the stratosphere to the ionosphere around midlatitude Andes[J]. Journal of Geophysical Research: Space Physics, 2015, 120(10): 9014-9022.
DOI URL |
[19] |
SCHMIDT T, ALEXANDER P, DE LA TORRE A. Stratospheric gravity wave momentum flux from radio occultations[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(9): 4443-4467.
DOI URL |
[20] |
ALEXANDER M J, BARNET C. Using satellite observations to constrain parameterizations of gravity wave effects for global models[J]. Journal of the Atmospheric Sciences, 2007, 64(5): 1652-1665.
DOI URL |
[21] | 陈丹, 陈泽宇, 吕达仁. 台风重力波的谱结构和动量通量特征分析[J]. 中国科学: 地球科学, 2013, 43(5): 874-882. |
[22] | EVAN S, ALEXANDER M J, DUDHIA J. WRF simulations of convectively generated gravity waves in opposite QBO phases[J]. Journal of Geophysical Research, 2012, 117: D12117. |
[23] |
GHOSH P, RAMKUMAR T K, YESUBABU V, et al. Convection-generated high-frequency gravity waves as observed by MST radar and simulated by WRF model over the Indian tropical station of Gadanki[J]. Quarterly Journal of the Royal Meteorological Society, 2016, 142(701): 3036-3049.
DOI URL |
[24] |
DU Y, ZHANG F. Banded convective activity associated with mesoscale gravity waves over southern China[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(4): 1912-1930.
DOI URL |
[25] | WU D L, ZHANG F Q. A study of mesoscale gravity waves over the North Atlantic with satellite observations and a mesoscale model[J]. Journal of Geophysical Research: Atmospheres, 2004, 109: D22104. |
[26] |
BINDU H H, RATNAM M V, YESUBABU V, et al. Medium frequency gravity wave characteristics obtained using Weather Research and Forecasting (WRF) model simulations[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2019, 182: 119-129.
DOI URL |
[27] |
ATHREYAS K N, GUNAWAN E, KIAT T B. Gravity waves generated by thunderstorms: South-East Asia tropical region study[J]. Advances in Space Research, 2019, 63(11): 3436-3451.
DOI URL |
[28] |
TODD P L, JASON C K. Some effects of model resolution on simulated gravity waves generated by deep, mesoscaleconvection[J]. Journal of the Atmospheric Sciences, 2004, 62(9): 3408-3419.
DOI URL |
[29] |
KALISCH S, CHUN H Y, ERN M, et al. Comparison of simulated and observed convective gravity waves[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(22): 13474-13492.
DOI URL |
[30] | 孙睿, 姚志刚, 韩志刚, 等. 一次暴雨激发平流层重力波的卫星观测与数值模拟[J]. 空间科学学报, 2018, 38(4): 469-481. |
[31] |
HOFFMANN L, ALEXANDER M J. Occurrence frequency of convective gravity waves during the North American thunderstorm season[J]. Journal of Geophysical Research: Atmospheres, 2010, 115: D20111.
DOI URL |
[32] |
HOFFMANN L, XUE X, ALEXANDER M J. A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(2): 416-434.
DOI URL |
[33] | 吴建飞. 热带气旋重力波的激发和传播机制研究[D]. 合肥: 中国科学技术大学, 2016. |
[34] |
ALEXANDER M J. Global and seasonal variations in three-dimensional gravity wave momentum flux from satellite limb-sounding temperatures[J]. Geophysical Research Letters, 2015, 42(16): 6860-6867.
DOI URL |
[35] | 王芬, 王文勇, 刘相, 等. FY-2卫星黑体亮温TBB与黔西南短时强降水的关系[J]. 中低纬山地气象, 2021, 45(1): 1-8. |
[36] |
YAMASHITA C, ENGLAND S L, IMMEL T J, et al. Gravity wave variations during elevated stratopause events using SABER observations[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(11): 5287-5303.
DOI URL |
[37] |
LIU X, YUE J, XU J Y, et al. Variations of global gravity waves derived from 14 years of SABER temperature observations[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(12): 6231-6249.
DOI URL |
[38] |
HONG S Y, DUDHIA J, CHEN S H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation[J]. Monthly Weather Review, 2004, 132(1): 103-120.
DOI URL |
[39] |
GRELL G A, DÉVÉNYI D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques[J]. Geophysical Research Letters, 2002, 29(14),38.DOI: 10.1029/2002GL015311.
DOI |
[40] |
MELLOR G L, YAMADA T. Development of a turbulence closure model for geophysical fluid problems[J]. Reviews of Geophysics and Space Physics, 1982, 20(4): 851-875.
DOI URL |
[41] | MLAWER E J, TAUBMAN S J, BROWN P D, et al. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave[J]. Journal of Geophysical Research, 1997, 102(D14): 16 663- 16 682. |
[42] |
DUDHIA J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. Journal of the Atmospheric Sciences, 1989, 46(20): 3077-3107.
DOI URL |
[43] | JANJIĆ Z I. Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model[Z]. Maryland,NOAA/NWS/NCEP Office, 2002:1-61. |
[44] |
CHEN F, DUDHIA J. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity[J]. Monthly Weather Review, 2001, 129: 569-585.
DOI URL |
[45] | 卞建春, 陈洪滨, 吕达仁. 用垂直高分辨率探空资料分析北京上空下平流层重力波的统计特性[J]. 中国科学: 地球科学, 2004, 34(8): 748-756. |
[46] | 邓少格, 钟中, 程胡华. 一次暴雨过程中重力波参数演变特征的模拟结果[J]. 地球物理学报, 2012, 55(6): 1831-1843. |
[47] |
ERN M, PREUSSE P, ALEXANDER M J, et al. Absolute values of gravity wave momentum flux derived from satellite data[J]. Journal of Geophysical Research: Atmospheres, 2004, 109: D20103.
DOI URL |
[48] | 姚志刚, 赵增亮, 韩志刚. AIRS观测的东亚夏季平流层重力波特征[J]. 地球物理学报, 2015, 58(4): 1121-1134. |
[49] |
COSTANTINO L, HEINRICH P, MZÉ N, et al. Convective gravity wave propagation and breaking in the stratosphere: comparison between WRF model simulations and lidar data[J]. Annales Geophysicae, 2015, 33(9): 1155-1171.
DOI URL |
[50] |
BERES J H, ALEXANDER M J, HOLTON J R. Effects of tropospheric wind shear on the spectrum of convectively generated gravity waves[J]. Journal of the Atmospheric Sciences, 2002, 59(11): 1805-1824.
DOI URL |
[51] |
BERES J H. Gravity wave generation by a three-dimensional thermal forcing[J]. Journal of the Atmospheric Sciences, 2004, 61(14): 1805-1815.
DOI URL |
[1] | CHU Yingjia, GUO Feiyan, GAO Fan, HU Peng, ZHENG Lina, LIU Yichen, LU Qi. Comparative analysis of two different types of severe convective processes under the influence of cold vortex [J]. Journal of Arid Meteorology, 2023, 41(2): 279-289. |
[2] | SUN Mingyan, ZHANG Shuwen. Cases study of numerical simulation influences of turbulent vertical mixing intensity on local thermal convection in boundary layer [J]. Journal of Arid Meteorology, 2023, 41(2): 290-300. |
[3] | XU Min, SHEN Fang, LIU Xuan, LIU Yanjie, ZHANG Xianghan. Environmental conditions and mesoscale characteristics of severe convective weather in Beijing-Tianjin-Hebei on 5 July 2021 [J]. Journal of Arid Meteorology, 2022, 40(6): 993-1002. |
[4] | ZHI Shulin, XU Dongbei, PAN Hela, LI Diannan, BAO Huimeng, CHEN Juan. Analysis on Radar Climatic Characteristics of Convective Activities in and Around Hanzhong Areas in Shaanxi Province [J]. Journal of Arid Meteorology, 2021, 39(4): 620-630. |
[5] | DONG Chunqing, WU Yongli, GUO Yuanyuan, MA Li, MIAO Qing. Application of Classification Indexes and Criterion on Severe Convection Weather in Shanxi Province [J]. Journal of Arid Meteorology, 2021, 39(2): 345-355. |
[6] | ZOU Shuping, HUANG Yu, ZENG Yong, LI Lili, YANG Zhe, CAO Shui, KE Liping. Similarity characteristics analysis of radar echo of a typical strong convection monomer pair [J]. Journal of Arid Meteorology, 2021, 39(06): 974-983. |
[7] | DONG Fu, ZHANG Ling, ZHANG Haipeng, LI Jia, SONG Liuxian. Review of Ensemble Forecast of Severe Weather Process Based on WRF Model [J]. Journal of Arid Meteorology, 2020, 38(5): 699-708. |
[8] | XU Juanjuan, HAO Li, LIU Jiahuimin, GUO Damei, ZHAO Qiang. #br# Diagnostic Analysis of a Regional Snowstorm in January of 2018 over Shaanxi Province#br# [J]. Journal of Arid Meteorology, 2020, 38(1): 117-125. |
[9] | DONG Junling, LIU Chao, SU Aifang. Impact of Urbanization on a Torrential Rain Process in Zhengzhou Region [J]. Journal of Arid Meteorology, 2019, 37(6): 922-932. |
[10] | LING Ting, CHEN Yun, CHEN Tao, LI Shengqi, YANG Shanshan. Mesoscale Characteristics Analysis on Two Rainstorms Triggered by Warm Shear Line with Low Vortex over the Yangtze-Huaihe Region [J]. Journal of Arid Meteorology, 2019, 37(5): 790-798. |
[11] | ZHU Ping, YU Xiaoding, WANG Zhenhui, XIAO Jianshe. Temporal and Spatial Distribution Characteristics of Disastrous Convective Weather over the Qinghai Plateau [J]. Journal of Arid Meteorology, 2019, 37(3): 377-. |
[12] | CHEN Wei, LI Yueqing. Main Research Progress on Gravity Waves in the Troposphere [J]. Journal of Arid Meteorology, 2018, 36(5): 717-724. |
[13] | ZENG Yong, YANG Lianmei, ZHANG Yingxin. Mechanism Analysis of Dry Intrusion During a Severe Convective Weather Process Under the Background of Central Asian Vortex in Aksu Area of Xinjiang [J]. Journal of Arid Meteorology, 2018, 36(1): 34-43. |
[14] | ZHAO Yu, ZHAO Guixiang, WANG Simin, SHEN Liwen. Meso-scale Analysis of A Strong Convective Weather Process Occuring on 28 July 2016 in Central Shanxi Province [J]. Journal of Arid Meteorology, 2017, 35(5): 874-885. |
[15] | TANG Jia, YAO Rong, WANG Xiaolei, TANG Minghui, ZHOU Changqing. Contrastive Analysis of Two Mixed Convective Weather Processes in Hu’nan in Spring of 2015 [J]. Journal of Arid Meteorology, 2017, 35(2): 250-259. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018 Journal of Arid Meteorology
Tel: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com