为更好地理解格点融合实况数据与观测数据的差异和代表性,利用甘肃兰州和武威两地站点的观测数据对中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)地面2 m气温融合产品进行检验评估及偏差订正。结果表明:(1)逐小时气温和日最低气温融合产品的平均误差总体为负值,较实际气温偏低,且在2 500 m以下误差随海拔上升而减小;日最高气温融合产品平均误差在海拔1 500 m附近为负值,1 500 m以上误差变为正值且随海拔升高而增大;日最高和最低气温误差较逐小时气温误差偏大,但平均误差均在2 ℃以内。(2)通过近网格点检验,发现逐小时CLDAS气温产品白天与实况相近,夜间较实况偏低0.2 ℃;日平均气温CLDAS融合产品总体较实况偏低1 ℃,兰州城区产品偏差相对较小;30 ℃以上高温天数融合产品与实况分布基本一致,但在兰州城区,CLDAS融合产品的高温天数较观测天数偏少。(3)线性回归法和递减平均法对CLDAS气温融合产品都有一定的订正效果,递减平均法订正效果更优且在高海拔地区订正效果更明显。CLDAS气温实况融合产品在兰州和武威两地能较好地反映气温变化特征,但日最高、最低气温误差较逐小时气温大,且在复杂地形下误差相对较大。
2022年7月15日地处西北东部半干旱区的甘肃庆阳出现特大暴雨,多站日雨量和小时雨量均突破历史极值,利用多源观测资料和ERA5再分析资料,针对这次特大暴雨过程形成机制进行分析。结果表明,本次过程是发生在黄土高原复杂地形下弱天气尺度斜压强迫、弱不稳定能量及深厚湿层背景下的暖区暴雨,局地性强、强降水持续时间长;南亚高压、副热带高压及低层气压系统上下叠加的环流形势配置有利于中尺度对流系统发生发展;地面辐合线和偏南低空急流触发对流系统初生、发展,低空急流的发展和长时间维持使地面辐合线不断加强,同时急流左侧(暴雨区)与其出口区和入口区右侧形成的稳定次级环流是对流系统维持的关键,而凝结潜热释放引发的局地锋生、低层正涡度发展则是对流系统发展维持的另一重要因素,同时也是大气不稳定度维持的重要原因。中尺度对流系统呈现深厚低质心、准静止特征,雷达回波具有后向传播和列车效应特征。
利用2008—2017年甘肃省河东地区自动气象观测站冰雹观测资料和灾情资料,对收集到的符合标准的河东地区75个冰雹个例进行中尺度诊断,按照主要影响系统分为3种冰雹天气类型,对3种冰雹天气型雷达产品的统计特征和雷达回波特征进行对比分析,并选取典型个例进一步分析验证。结果表明,在3种冰雹天气型下,多普勒雷达产品的最大反射率因子(Zmax)及其所在高度( H Z m a x)区别较小,Zmax均大于50 dBZ,对应 H Z m a x也在2.0 km以上;回波顶高(ET)、核心区厚度(H)、45 dBZ以上质心高度(H45 dBZ)、风暴体大于等于30 dBZ所在最大高度(TOP)、垂直累积液态水含量(VIL)及垂直累积液态水含量密度(VILD)存在明显差异,西北气流型的H、H45 dBZ、TOP和VIL较高,低槽型的ET和低涡型的VILD较低;3种冰雹天气型出现回波悬垂的频率均在61.0%以上,低槽型出现三体散射和旁瓣回波的频率分别为35.5%、48.4%,而出现有界弱回波区的频率为12.9%,西北气流型和低涡型出现有界弱回波区的频率均达38.5%;三体散射和旁瓣回波特征具有一定的预报时间提前量,提前量平均18 min,最大30 min。
基于欧洲中期天气预报中心(ECMWF)的精细化数值预报产品、中国气象局下发的降水指导产品(TP_CMA)及甘肃省340个气象站点降水实况数据,利用泰森多边形与K-means空间聚类方法(spatial cluster and Tyson polygon,SCTP),对2017—2019年4—9月甘肃省340站降水资料进行客观分区。在此基础上,采用随机森林算法(random forest,RF),筛选出与降水相关的物理量因子构建模型,开展甘肃省短期定量降水客观预报订正试验,并进行预报效果检验。结果表明:(1)甘肃省4—9月降水客观分区依次为7、6、14、13、14和11个。(2)就晴雨预报而言,SCTP-RF订正产品对甘肃省汛期的晴雨预报能力较TP_CMA指导产品和ECMWF模式产品有一定提升,提升幅度分别为6.1%、4.2%;在空间上,SCTP-RF算法对甘肃省340站的晴雨预报均具有一定的订正能力,大部分站点晴雨预报准确率提升了5%,特别是河东地区。(3)在分级降水预报中,SCTP-RF订正产品对中雨和大雨的预报能力均优于TP_CMA指导产品和ECMWF模式产品,且全省大部的订正效果较好,特别是河东中部及陇东南地区,但在强降水过程中对小雨和暴雨的预报订正不稳定,尤其是陇东南地区的小雨。