[1] |
冯迪凡. 海洋也在升温!远海风暴概率增加如何威胁航运业和全球供应链[N]. 第一财经日报, 2023-08-29( A05).
|
[2] |
郭浩康, 李春, 石剑, 2023. 2021年5月江南持续强降水的准双周振荡及可能成因[J]. 中国海洋大学学报(自然科学版), 53(11): 11-23.
|
[3] |
国家气候中心, 中国气象局预报与网络司, 中国气象局兰州干旱气象研究所, 2017. 气象干旱等级:GB/T 20481—2017[S]. 北京: 中国标准出版社.
|
[4] |
李艳, 马百胜, 杨宣, 2019. 两类ENSO事件对中国东部地区极端降水的影响[J]. 长江流域资源与环境, 28(2): 469-482.
|
[5] |
陆晓娟, 房佳蓓, 杨修群, 等, 2022. 中国东部夏季季节内降水异常及其伴随的热带和中高纬度大气环流演变特征[J]. 气象学报, 80(1): 1-20.
|
[6] |
马梦璇, 2023. 干旱威胁巴拿马运河跨太货运受影响[J]. 中国航务周刊, (19): 19.
|
[7] |
王安英, 2021. 北半球夏季热带次季节信号影响我国夏季降水的规律和预测方法[D]. 南京: 南京大学.
|
[8] |
王林, 陈文, 2014. 标准化降水蒸散指数在中国干旱监测的适用性分析[J]. 高原气象, 33(2): 423-431.
DOI
|
[9] |
王晓慧, 2023. 厄尔尼诺多样性对东亚降水的影响及其机理研究[D]. 南京: 南京信息工程大学.
|
[10] |
颜子翔, 2022. ENSO降水异常多样性及其在全球变暖背景下的变化研究[D]. 南京: 南京信息工程大学.
|
[11] |
姚阮, 2020. 长江中下游夏季持续性强降水多尺度特征及其与阻塞高压的联系[D]. 南京: 南京大学.
|
[12] |
张惠景, 2022. El Niño年赤道东太平洋降水异常的季节差异[D]. 南京: 南京信息工程大学.
|
[13] |
张峻榕. 巴拿马运河“堵船”影响开始显现[N]. 文汇报, 2023-08-15( 6).
|
[14] |
张强, 姚玉璧, 李耀辉, 等, 2020. 中国干旱事件成因和变化规律的研究进展与展望[J]. 气象学报, 78(3): 500-521.
|
[15] |
翟盘茂, 余荣, 郭艳君, 等, 2016. 2015/2016年强厄尔尼诺过程及其对全球和中国气候的主要影响[J]. 气象学报, 74(3): 309-321.
|
[16] |
郑飞, 朱江, 张荣华, 等, 2016. 2015年超级厄尔尼诺事件的成功预报[J]. 中国科学院院刊, 31(2): 251-257.
|
[17] |
ALLEN R G, PEREIRA L, RAES D, et al, 1998. FAO Irrigation and Drainage Paper No. 56: Crop Evapotranspiration (guidelines for computing crop water requirements)[M]. Rome:FAO, Water Resources, Development and Management Service, 300.
|
[18] |
BOUSHAKI F I, HSU K L, SOROOSHIAN S, et al, 2009. Bias adjustment of satellite precipitation estimation using ground-based measurement: a case study evaluation over the southwestern United States[J]. Journal of Hydrometeorology, 10(5): 1 231-1 242.
|
[19] |
CAI W, WHETTON P H, PITTOCK A B, 2001. Fluctuations of the relationship between ENSO and northeast Australian rainfall[J]. Climate Dynamics, 17(5/6): 421-432.
|
[20] |
CAPOTONDI A, WITTENBERG A T, NEWMAN M, et al, 2015. Understanding ENSO diversity[J]. Bulletin of the American Meteorological Society, 96(6): 921-938.
|
[21] |
CARVALHO L M V, JONES C, POSADA A N D, et al, 2012. Precipitation characteristics of the south American monsoon system derived from multiple datasets[J]. Journal of Climate, 25(13): 4 600-4 620.
|
[22] |
CHEN C T, KNUTSON T, 2019. Notes and correspondence on the verification and comparison of extreme rainfall indices from climate models[J]. Journal of Climate, 21(7): 1 605-1 621.
|
[23] |
CHEN G, TAM C Y, 2010. Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific: impacts of ocean warning on TC frequency[J]. Geophysical Research Letters, 37(1): 70-75.
|
[24] |
CHEN M, SHI W, XIE P, et al, 2008. Assessing objective techniques for gauge-based analyses of global daily precipitation[J]. Journal of Geophysical Research: Atmospheres, 113(D4): 110. DOI: 10.1029/2007JD009132.
|
[25] |
CHEN Z, WEN Z, WU R, et al, 2014. Influence of two types of El Niños on the East Asian climate during boreal summer: a numerical study[J]. Climate Dynamics, 43(1/2): 469-481.
|
[26] |
CHANG N B, VASQUEZ M V, CHEN C F, et al, 2015. Global nonlinear and nonstationary climate change effects on regional precipitation and forest phenology in Panama, Central America[J]. Hydrological Processes, 29(3): 339-355.
|
[27] |
EVANS J L, ALLAN R J, 1992. El Nino/southern oscillation modification to the structure of the monsoon and tropical cyclone activity in the Australasian region[J]. International Journal of Climatology, 12(6): 611-623.
|
[28] |
JIANG F, ZHANG W, JIN F, et al, 2021. Meridional migration of ENSO impact on tropical Atlantic precipitation controlled by the seasonal cycle[J]. Geophysical Research Letters, 48(24), e2021GL096365. DOI: 10.1029/2021GL096365.
|
[29] |
KAHVA E, DRAEUP J A, 1993. U.S. streamflow patterns in relation to the El Niño/Southern Oscillation[J]. Water Resource Research, 29(8): 2 491-2 503.
|
[30] |
KENNETH J F, STUART J D, ROLANDO P, et al, 2011. Directional changes in the species composition of a tropical forest[J]. Ecological Society of America, 92(4): 871-882.
|
[31] |
KHAN N, SHAHID S, SHARAFATI A, et al, 2021. Determination of cotton and wheat yield using the standard precipitation evaporation index in Pakistan[J]. Arabian Journal of Geosciences, 19: 14. DOI: 10.1007/s12517-021-08432-1.
|
[32] |
KIM H M, WEBSTER P J, CURRY J A, 2009. Impact of shifting patterns of Pacific ocean warming on North Atlantic tropical cyclones[J]. Science, 325(5936): 77-80.
|
[33] |
KIM J W, CHANG T H, LEE C T, et al, 2021. On the varying responses of East Asian winter monsoon to three types of El Niño: observations and model hindcasts[J]. Journal of Climate, 34(10): 4 089-4 101.
|
[34] |
KUMAR S, CHANDA K, PASUPULETI S, 2020. Spatiotemporal analysis of extreme indices derived from daily precipitation and temperature for climate change detection over India[J]. Theoretical and Applied Climatology, 140(1): 343-357.
|
[35] |
LI K X, ZHENG F, CHENG L, et al, 2023. Record-breaking global temperature and crises with strong El Niño in 2023-2024[J]. The Innovation Geoscience, 1(2), 100030.
|
[36] |
LIAN T, WANG J, CHEN D, et al, 2023. A strong 2023/24 El Niño is staged by Tropical Pacific ocean heat content buildup[J/OL]. Ocean-Land-Atmosphere Research, 2, 0011. https://spj.science.org/doi/10.34133/olar.0011
|
[37] |
LUKE B, LARS M, BETTINA M J E, et al, 2021. Increased mortality of tropical tree seedlings during the extreme 2015/16 El Niño[J]. Global Change Biology, 27(20): 5 043-5 053.
|
[38] |
MCPHADEN M J, 1999. Genesis and evolution of the 1997/98 El Niño[J]. Science, 283(5404): 950-954.
|
[39] |
MIAH M G, ABDULLAH H M, et al, 2017. Exploring standardized precipitation evapotranspiration index for drought assessment in Bangladesh[J/OL]. Environmental Monitoring and Assessment, 189(11), 547. https://doi.org/10.1007/s10661-017-6235-5.
|
[40] |
MOORHEAD J E, MAREK G W, GOWDA P H, et al, 2017. Exceedance probability of the Standardized Precipitation-evapotranspiration Index in the Texas High Plains[J]. Agricultural Sciences,(8): 783-800.
|
[41] |
NGUYEN P, OMBADI M, SOROOSHIAN S, et al, 2018. The PERSIANN family of global satellite precipitation data: a review and evaluation of products[J]. Hydrology and Earth System Sciences, 22(11): 5 801-5 816.
|
[42] |
OLUSEGUN C F, OGUNJO S, OLUSOLA A, 2023. Evolution and copula modelling of drought duration and severity over Africa using CORDEX-CORE regional climate models[J]. International Journal of Climatology: A Journal of the Royal Meteorological Society, 43(8): 3 629-3 646.
|
[43] |
PHAN-VAN T, NGUYEN-NGOC-BICH P, NGO-DUC T, et al, 2022. Drought over Southeast Asia and its association with large-scale drivers[J]. Journal of Climate, 35(15): 4 959-4 978.
|
[44] |
POWER S, DELAGE F, CHUNG C, et al, 2013. Robust twenty-first-century projections of El Niño and related precipitation variability[J]. Nature, 502: 541-545.
|
[45] |
ROPELEWSKI C F, HALPERT M S, 1987. Global and regional scale precipitation patterns associated with the El Nio/Southern Oscillation[J]. Monthly Weather Review, 115(8): 1 606-1 626.
|
[46] |
ROCHA A, PAULO M-G, MARQUES C, et al, 2010. High-frequency precipitation changes in southeastern Africa due to anthropogenic forcing[J]. International Journal of Climatology, 28(9): 1 239-1 245.
|
[47] |
SAUNDERS M A, CHANDLER R E, MERCHANT C J, et al, 2000. Atlantic hurricanes and NW Pacific typhoons: ENSO spatial impacts on occurrence and landfall[J]. Geophysical Research Letters, 27(8): 1 147-1 150.
|
[48] |
SHAWUL A A, CHAKMA S, 2020. Suitability of global precipitation estimates for hydrologic prediction in the main watersheds of Upper Awash basin[J]. Environmental Earth Sciences, 79(2), DOI:10.1007/s12665-019-8801-3.
|
[49] |
STAGGE J H, TALLAKSEN L M, XU C Y, et al, 2014. Standardized precipitation-evapotranspiration index (SPEI): sensitivity to potential evapotranspiration model and parameters[C]// Hydrology in a Changing World: Environmental and Human Dimensions Proceedings of FRIEND-Water 2014, Montpellier, France, 367-373.
|
[50] |
TAREK M, BRISSETTE F P, ARSENAULT R, 2020. Large-scale analysis of global gridded precipitation and temperature datasets for climate change impact studies[J]. Journal of Hydrometeorology, 21(11): 2 623-2 640.
|
[51] |
THORNTHWAITE C W, 1984. An approach toward a rational classification of climate[J]. Geographical Review, 38(1): 55.
|
[52] |
TORRES R R, GIRALDO E, MUñOZ C, et al, 2023. Seasonal and El Niño-Southern Oscillation-related ocean variability in the Panama Bight[J]. Ocean Science, 19(3): 685-701.
|
[53] |
VICENTE-SERRANO S M, BEGUERIA S, LÓPEZ-MORENO J I, 2010. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index[J]. Journal of Climate, 23(7): 1 696-1 718.
|
[54] |
XIE P P, YATAGAI A, CHEN M Y, et al, 2007. A gauge-based analysis of daily precipitation over East Asia[J]. Journal of Hydrometeorology, 8(3): 607-626.
|
[55] |
XU J, ZHU S, MA Z, et al, 2021. Calibrating GPM IMERG Late-Run product using ground-based CPC daily precipitation data: a case study in the Beijing-Tianjin-Hebei urban agglomeration[J]. Remote Sensing Letters, 12(9): 848-858.
|
[56] |
XU M, XU H, MA J, et al, 2022. Impact of Pacific decadal oscillation on interannual relationship between El Niño and South China Sea summer monsoon onset[J]. International Journal of Climatology, 42(5): 2 739-2 753.
|
[57] |
YANG S, LI Z, YU J Y, et al, 2018. El Niño-Southern Oscillation and its impact in the changing climate[J]. National Science Review, 5(6): 840-857.
|
[58] |
ZHANG W, LEUNG Y, FRAEDRICH K, 2015. Different El Niño types and intense typhoons in the Western North Pacific[J]. Climate Dynamics, 44(11/12): 2 965-2 977.
|
[59] |
ZHENG F, ZHU J, 2016. Improved ensemble-mean forecasting of ENSO events by a zero-mean stochastic error model of an intermediate coupled model[J]. Climate Dynamics, 47: 3 901-3 915.
|