干旱气象 ›› 2022, Vol. 40 ›› Issue (2): 169-178.DOI: 10.11755/j.issn.1006-7639(2022)-02-0169
收稿日期:
2021-09-24
修回日期:
2021-12-09
出版日期:
2022-04-30
发布日期:
2022-05-10
通讯作者:
黄建平
作者简介:
安琳莉(1997— ),四川成都人,硕士生,主要从事气候变化研究. E-mail: anll15@lzu.edu.cn。
基金资助:
AN Linli(), HUANG Jianping(
), REN Yu, ZHANG Guolong
Received:
2021-09-24
Revised:
2021-12-09
Online:
2022-04-30
Published:
2022-05-10
Contact:
HUANG Jianping
摘要:
基于重力反演与气候实验(Gravity Recovery and Climate Experiment, GRACE)卫星观测数据分析中国北方旱区近20 a的陆地水储量变化,并结合多种观测和模式数据分析其变化特征和原因。结果表明,2002—2020年中国北方旱区陆地水储量以每年17.80±1.72 Gt的净速率下降。地下水、根区土壤水和表层土壤水均不同程度减少。归因分析发现:在中国北方旱区,地表升温和人为耗水等因素造成蒸散大量增加。蒸散的负向贡献超过同期降水的正向贡献,使得区域净水储量持续减少,区域水资源压力攀升。因此,需要在中国北方旱区采取更有效的节水措施和建立全面的水资源监测系统。
中图分类号:
安琳莉, 黄建平, 任钰, 张国龙. 中国北方旱区陆地水储量变化特征及其归因分析[J]. 干旱气象, 2022, 40(2): 169-178.
AN Linli, HUANG Jianping, REN Yu, ZHANG Guolong. Characteristic and cause analysis of terrestrial water storage change in drylands of northern China[J]. Journal of Arid Meteorology, 2022, 40(2): 169-178.
图2 基于JPL-M(a、b)、JPL-SH(c、d)、CSR-M(e、f)和CSR-SH(g、h)产品的中国北方旱区2002年4月至2020年7月TWS气候倾向率空间分布(a、c、e、g,单位:mm·a-1)和去除季节循环的TWS区域总量距平时间序列(b、d、f、h) [黑点表示该地气候倾向率通过α=0.05显著性检验(下同)]
Fig.2 Spatial distribution of climate tendency rate of TWS (Unit: mm·a-1) and time series of deseasonalized TWS regional total amount anomaly from April 2002 to July 2020 in drylands of northern China based on JPL-M (a, b), JPL-SH (c, d), CSR-M (e, f) and CSR-M (g, h) products (Black dots in the maps denote the regions where the climate tendency rate of TWS passed the 0.05 significance test (the same as below))
图3 4种GRACE产品去除季节循环的TWS区域总量距平的集合平均 (阴影代表两倍标准差)
Fig.3 Ensemble mean of anomaly of deseasonalized TWS regional total amount of 4 GRACE products (The shaded denotes the two standard deviation)
图4 2003年2月至2020年7月中国北方旱区地下水(a)、根区土壤水(b)、表层土壤水(c)气候倾向率(单位:mm·a-1)空间分布(a、b、c)及区域总量距平时间序列(d)
Fig.4 Spatial distribution of climate tendency rate (Unit: mm·a-1) of groundwater (a), root zone soil moisture (b) and surface soil moisture (c) from February 2003 to July 2020 in drylands of northern China and time series of regional total anomaly (d)
图5 中国北方旱区2002—2020年与1980—2020年平均年降水量差值(a,单位:mm)、差值占1980—2020平均年降水量百分比(b,单位:%)的空间分布和1980—2020年平均降水量年际变化(c)
Fig.5 The spatial distribution of difference in the average annual precipitation between the period of 2002-2020 and the period of 1980-2020 (a, Unit: mm), the difference as a percentage of the average annual precipitation during 1980-2020 (b, Unit: %) and the inter-annual variation of average precipitation during 1980-2020 (c) in drylands of northern China
图7 中国北方旱区2002—2020年与1980—2020年平均年蒸散量差值(a,单位:mm)、差值占1980—2020平均年蒸散量的百分比(b)的空间分布和1980—2020年平均蒸散量年际变化(c)
Fig.7 The spatial distribution of difference of the average annual evapotranspiration between the period of 2002-2020 and the period of 1980-2020 (a, Unit: mm), the difference as a percentage of the average annual evapotranspiration during 1980-2020 (b) and the inter-annual variation of average evapotranspiration during 1980-2020 (c) in drylands of northern China
图9 中国北方旱区2002—2016年与1980—2016年平均年人为耗水量差值的空间分布(a,单位:mm)和1980—2016年平均人为耗水量年际变化(b)
Fig.9 The spatial distribution of difference of the average annual human water consumption between the period of 2002-2016 and the period of 1980-2016 (a, Unit: mm) and the inter-annual variation of average human water consumption during 1980-2016 (b) in drylands of northern China
[1] |
RODELL M, FAMIGLIETTI J S, WIESE D N, et al. Emerging trends in global freshwater availability[J]. Nature, 2018, 557(7707):651-659.
DOI URL |
[2] |
WANG J, SONG C, REAGER J T, et al. Recent global decline in endorheic basin water storages[J]. Nature Geoscience, 2018, 11(12):926-932.
DOI URL |
[3] |
ZEMP M, HUSS M, THIBERT E, et al. Global glacier mass changes and their contributions to sealevel rise from 1961 to 2016[J]. Nature, 2019, 568(7752):382-386.
DOI URL |
[4] |
WADA Y, VAN BEEK L P H, VAN KEMPEN C M, et al. Global depletion of groundwater resources[J]. Geophysical Research Letters 2010, 37(20),L20402. DOI: 10.1029/2010GL044571.
DOI |
[5] |
PEKEL J-F, COTTAM A, GORELICK N, et al. High-resolution mapping of global surface water and its long-term changes[J]. Nature, 2016, 540(7633):418-422.
DOI URL |
[6] |
ZHAO Q, ZHANG B, YAO Y, et al. Geodetic and hydrological measurements reveal the recent acceleration of groundwater depletion in North China Plain[J]. Journal of Hydrology, 2019, 575:1065-1072.
DOI URL |
[7] |
TANGDAMRONGSUB N, HAN S C, TIAN S Y, et al. Evaluation of groundwater storage variations estimated from GRACE data assimilation and state-of-the-art land surface models in Australia and the North China Plain[J]. Remote Sensing, 2018, 10(3),483. DOI: 10.3390/rs10030483
DOI URL |
[8] |
RODELL M, VELICOGNA I, FAMIGLIETTI J S. Satellite-based estimates of groundwater depletion in India[J]. Nature, 2009, 460(7258):999-1002.
DOI URL |
[9] |
VOROSMARTY C J, MCINTYRE P B, GESSNER M O, et al. Global threats to human water security and river biodiversity[J]. Nature, 2010, 467(7315):555-561.
DOI URL |
[10] | 张强, 赵映东, 张存杰, 等. 西北干旱区水循环与水资源问题[J]. 干旱气象, 2008, 26(2):1-8. |
[11] |
HUANG Q, ZHANG Q, XU C Y, et al. Terrestrial water storage in China: spatiotemporal pattern and driving factors[J]. Sustainability, 2019, 11(23):6646.
DOI URL |
[12] | XU L, CHEN N, ZHANG X, et al. Spatiotemporal changes in China’s terrestrial water storage from GRACE satellites and its possible drivers[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(22):11 976-11 993. |
[13] |
WANG X, XIAO X, ZOU Z, et al. Gainers and losers of surface and terrestrial water resources in China during 1989-2016[J]. Nature Communications, 2020, 11(1):3471. DOI: 10.10138/s41467-020-17103-w.
DOI URL |
[14] | 郭瑞霞, 管晓丹, 张艳婷. 我国荒漠化主要研究进展[J]. 干旱气象, 2015, 33(3):505-514. |
[15] |
LI Y, HUANG J, JI M, et al. Dryland expansion in northern China from 1948 to 2008[J]. Advances in Atmospheric Sciences, 2015, 32(6):870-876.
DOI URL |
[16] | 柏庆顺, 颜鹏程, 蔡迪花, 等. 近56 a中国西北地区不同强度干旱的年代际变化特征[J]. 干旱气象, 2019, 37(5):722-728. |
[17] | 金红梅, 乔梁, 颜鹏程, 等. 基于近似熵的中国西北地区干旱的非线性特征[J]. 干旱气象, 2019, 37(5):713-721. |
[18] | 冯蜀青, 王海娥, 柳艳香, 等. 西北地区未来10 a气候变化趋势模拟预测研究[J]. 干旱气象, 2019, 37(4):557-564. |
[19] |
AESCHBACH-HERTIG W, GLEESON T. Regional strategies for the accelerating global problem of groundwater depletion[J]. Nature Geoscience, 2012, 5(12):853-861.
DOI URL |
[20] |
DALIN C, WADA Y, KASTNER T, et al. Groundwater depletion embedded in international food trade[J]. Nature, 2017, 543(7647):700-704.
DOI URL |
[21] | AN L, WANG J, HUANG J, et al. Divergent causes of terrestrial water storage decline between drylands and humid regions globally[J/OL]. Geophysical Research Letters, 2021, 48(23), e2021GL095035. https://doi.org/10.1029/2021GL095035 |
[22] | MO X, WU J J, WANG Q, et al. Variations in water storage in China over recent decades from GRACE observations and GLDAS[J/OL]. Natural Hazards and Earth System Sciences, 2016, 16(2):469-482. |
[23] |
MENG F, SU F, LI Y, et al. Changes in terrestrial water storage during 2003-2014 and possible causes in Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(6):2909-2931.
DOI URL |
[24] |
TAPLEY B D, BETTADPUR S, RIES J C, et al. GRACE measurements of mass variability in the Earth system[J]. Science, 2004, 305(5683):503-505.
DOI URL |
[25] | FENG S, FU Q. Expansion of global drylands under a warming climate[J]. Atmospheric Chemistry and Physics, 2013, 13(19):10 081-10 094. |
[26] |
HUANG J, YU H, GUAN X, et al. Accelerated dryland expansion under climate change[J]. Nature Climate Change, 2016, 6(2):166-171.
DOI URL |
[27] |
WIESE D N, LANDERER F W, WATKINS M M. Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution[J]. Water Resources Research, 2016, 52(9):7490-7502.
DOI URL |
[28] |
SAVE H, BETTADPUR S, TAPLEY B D. High-resolution CSR GRACE RL05 mascons[J]. Journal of Geophysical Research-Solid Earth, 2016, 121(10):7547-7569.
DOI URL |
[29] |
GHIGGI G, HUMPHREY V, SENEVIRATNESI, et al. GRUN: an observation-based global gridded runoff dataset from 1902 to 2014[J]. Earth System Science Data, 2019, 11(4):1655-1674.
DOI URL |
[30] |
SCHMIED H M, CÁCERES D, EISNER S, et al. The global water resources and use model WaterGAP v2.2d: model description and evaluation[J]. Geoscientific Model Development, 2021, 14(2):1037-1079.
DOI URL |
[31] |
SCANLON B R, ZHANG Z, RATEB A, et al. Tracking seasonal fluctuations in land water storage using global models and GRACE Satellites[J]. Geophysical Research Letters, 2019, 46(10):5254-5264.
DOI URL |
[32] | 陈坤, 蒋卫国, 何福红, 等. 基于GRACE数据的中国水储量变化特征分析[J]. 自然资源学报, 2018, 33(2):275-286. |
[33] |
OKI T, KANAE S. Global hydrological cycles and world water resources[J]. Science, 2006, 313(5790):1068-1072.
DOI URL |
[34] |
PASCOLINI-CAMPBELL M, REAGER J T, CHANDANPURKAR H A, et al. A 10 per cent increase in global land evapotranspiration from 2003 to 2019[J]. Nature, 2021, 593(7860):543-547.
DOI URL |
[35] |
HUANG J, YU H, DAI A, et al. Drylands face potential threat under 2 ℃ global warming target[J]. Nature Climate Change, 2017, 7(6):417-422.
DOI URL |
[36] |
WADA Y, FLORKE M, HANASAKI N, et al. Modeling global water use for the 21st century: the Water Futures and Solutions (WFaS) initiative and its approaches[J]. Geoscientific Model Development, 2016, 9(1):175-222.
DOI URL |
[37] |
GRIEBLER C, AVRAMOV M. Groundwater ecosystem services: a review[J]. Freshwater Science, 2015, 34(1):355-367.
DOI URL |
[38] | BIERKENS M F P, WADA Y. Non-renewable groundwater use and groundwater depletion: a review[J]. Environmental Research Letters, 2019, 14(6):43. |
[39] |
李明, 孙洪泉, 苏志诚. 中国西北气候干湿变化研究进展[J]. 地理研究, 2021, 40(4):1180-1194.
DOI |
[40] | BRUN F, BERTHIER E, WAGNON P, et al. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016[J]. Nature Geoscience, 2017(10):668-673. |
[41] |
HUGONNET R, MCNABB R, BERTHIER E, et al. Accelerated global glacier mass loss in the early twenty-first century[J]. Nature, 2021, 592(7856):726-731.
DOI URL |
[1] | 郑林晔, 谌芸, 冯恬, 姚梦颖. 登陆华东台风降水分布特征[J]. 干旱气象, 2022, 40(3): 424-435. |
[2] | 王俊超, 王志斌, 赖安伟, 肖艳姣, 王珏. 基于数值预报与雷达外推预报融合方法的降水回波短临预报试验研究[J]. 干旱气象, 2022, 40(3): 485-499. |
[3] | 姬雪帅, 王丽婧, 郭宏, 康博思, 黄山江, 张曦丹, 郭旭晖. 基于多源观测资料对张家口一次雨雪天气降水相态特征的分析[J]. 干旱气象, 2022, 40(3): 507-515. |
[4] | 高建秋, 郑彬, 游积平, 何松蔚, 余小嘉, 杨博成. 2018年广东空中水物质评估及开发分析[J]. 干旱气象, 2022, 40(3): 516-523. |
[5] | 陈晓燕, 孔祥伟, 彭筱, 刘新伟, 吴晶, 任淑媛. 全球和区域数值模式在甘肃2020年汛期降水预报中的检验评估[J]. 干旱气象, 2022, 40(3): 524-535. |
[6] | 钱勇, 邱贵强, 张华明, 李强, 崔蕾, 李云飞. 多源气象资料在森林雷击火辨识中的应用[J]. 干旱气象, 2022, 40(3): 536-543. |
[7] | 赵文, 王澄海, 张强, 岳平, 赵宁, 杜莉丽. 基于SRTM数据地物滤波改进雷达降水估测[J]. 干旱气象, 2022, 40(2): 296-307. |
[8] | 李涛, 陈杰, 汪方, 韩锐. 一种基于神经网络的中国区域夏季降水预测订正算法[J]. 干旱气象, 2022, 40(2): 308-316. |
[9] | 黄楚惠, 牛金龙, 李国平, 陈朝平, 肖递祥, 张平. 基于西南区域中尺度模式系统预报的陡峭地形过渡带降水订正方法[J]. 干旱气象, 2022, 40(2): 317-326. |
[10] | 沈晓燕, 申燕玲, 权晨, 杜华礼, 颜玉倩. 不同方法对青海2020年强降水模式产品预报性能的检验对比[J]. 干旱气象, 2022, 40(2): 333-343. |
[11] | 冯晋勤, 卢芸芸, 赖巧珍, 蔡菁. 福建西部山区一次中尺度对流系统触发机制分析[J]. 干旱气象, 2022, 40(1): 62-72. |
[12] | 胡振菊, 黎璐, 黄小玉, 何炳文, 叶日新. 一次典型东风波极端暴雨的中尺度特征及地形影响分析[J]. 干旱气象, 2022, 40(1): 73-83. |
[13] | 刘娜, 黄武斌, 杨建才, 王基鑫, 王一丞, 张君霞. 基于SCTP-RF算法的甘肃省短期定量降水客观预报方法研究[J]. 干旱气象, 2022, 40(1): 146-155. |
[14] | 陈颖, 张冬峰, 王林, 刘月丽, 王大勇. RegCM4对华北区域21世纪气候变化预估研究[J]. 干旱气象, 2022, 40(1): 1-10. |
[15] | 李蓉, 刘新伟, 魏栋, 段海霞, 段伯隆, 李嘉睿, 狄潇泓. 基于区域自动站数据的兰州地区降水精细化特征[J]. 干旱气象, 2022, 40(1): 55-61. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
陇ICP备09004376
Copyright © 2019 《干旱气象》 编辑部
地址: 甘肃省兰州市东岗东路2070号,中国气象局兰州干旱气象研究所 730020
电话: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com
技术支持: 北京玛格泰克科技发展有限公司
访问总数: 当日访问总数: 当前在线人数: