| [1] |
耿蔚, 张亮, 杨进, 2019. 基于GIS的四川省区域性暴雨降水分布的空间插值方法与面积估测[J]. 高原山地气象研究, 39(3): 75-81.
|
| [2] |
韩艳莉, 于德永, 陈克龙, 等, 2022. 2000—2018年青海湖流域气温和降水量变化趋势空间分布特征[J]. 干旱区地理, 45(4): 999-1 009.
DOI
|
| [3] |
施雅风, 沈永平, 胡汝骥, 2002. 西北气候由暖干向暖湿转型的信号、影响和前景初步探讨[J]. 冰川冻土, 24(3): 219-226.
|
| [4] |
孙从建, 陈伟, 王诗语, 2022. 气候变化下的塔里木盆地西南部内陆河流域径流组分特征分析[J]. 干旱区研究, 39(1): 113-122.
DOI
|
| [5] |
谭剑波, 李爱农, 雷光斌, 2016. 青藏高原东南缘气象要素Anusplin和Cokriging空间插值对比分析[J]. 高原气象, 35(4): 875-886.
DOI
|
| [6] |
王海彬, 刘家宏, 刘希胜, 等, 2024. 基于ANUSPLIN插值法的青海湖流域数字流域模型研究[J]. 水资源保护, 40(4): 82-91.
|
| [7] |
王宗太, 1991. 天山中段及祁连山东段小冰期以来的冰川及环境[J]. 地理学报, 46(2): 160-168.
DOI
|
| [8] |
徐栋, 孔莹, 王澄海, 2016. 西北干旱区水汽收支变化及其与降水的关系[J]. 干旱气象, 34(3): 431-439.
DOI
|
| [9] |
臧传富, 刘俊国, 2013. 黑河流域蓝绿水在典型年份的时空差异特征[J]. 北京林业大学学报, 35(3): 1-10.
|
| [10] |
张乐, 2017. 渭北旱塬地区干旱—农业匹配特征研究[D]. 杨凌: 西北农林科技大学.
|
| [11] |
张强, 朱飙, 杨金虎, 等, 2021. 西北地区气候湿化趋势的新特征[J]. 科学通报, 66(增刊2): 3 757-3 771.
|
| [12] |
张文奇, 赵媛媛, 赖宗锐, 等, 2024. 基于ANUSPLIN模型的柴达木盆地2000—2019年降水时空格局[J]. 高原气象, 43(3): 737-748.
DOI
|
| [13] |
朱明飞, 刘海隆, 2018. 基于SWAT模型干旱区内陆河流域径流成分的模拟分析:以玛纳斯河上游为例[J]. 石河子大学学报:自然科学版, 36(1): 89-94.
|
| [14] |
卓静, 朱延年, 2017. 秦岭主脊区年降水量空间插值最优方法研究[J]. 干旱区地理, 40(3): 555-563.
|
| [15] |
HUTCHINSON M F, 1998. Interpolation of rainfall data with thin plate smoothing splines-part I: Two dimensional smoothing of data with short range correlation[J]. Journal of Geographic Information and Decision Analysis, 2(2): 152-167.
|
| [16] |
HUTCHINSON M F, 2007. ANUSPLIN Version 4.37 User Guide[M]. Canberra: The Australian National University, Centre for Resource and Environment Studies: 1-12.
|
| [17] |
HUTCHINSON M F, GESSLER P E, 1994. Splines—more than just a smooth interpolator[J]. Geoderma, 62(1/2/3): 45-67.
DOI
URL
|
| [18] |
HUTCHINSON M F. 1991. The application of thin plate smoothing splines to continent-wide data assimilation[M]// JASPER J D. Data Assimilation Systems. Melbourne: Bureau of Meteorology: 104-113.
|
| [19] |
KRIGE D G, 1951. A statistical approach to some basic mine valuation problems on the witwatersrand[J]. Journal of the Chemical, Metallurgical and Mining Society of South Africa, 52(6): 119-139.
|
| [20] |
MACDONALD H, MCKENNEY D W, PEDLAR J, et al, 2024. Spatial datasets of 30-year (1991-2020) average monthly total precipitation and minimum/maximum temperature for Canada and the United States[J]. Data in Brief, 55: 110561. DOI: 10.1016/j.dib.2024.110561.
|
| [21] |
MACDONALD H, MCKENNEY D W, WANG X L, et al, 2021. Spatial models of adjusted precipitation for Canada at varying time scales[J]. Journal of Applied Meteorology and Climatology, 60(3): 291-304.
DOI
URL
|
| [22] |
SHEPARD D, 1968. A two-dimensional interpolation function for irregularly-spaced data[C]// Rosenberg M. Proceedings of the 1968 23rd ACM National Conference. New York: Association for Computing Machinery: 517-524.
|
| [23] |
THIESSEN A H, 1911. Precipitation averages for large areas[J]. Monthly Weather Review, 39(7): 1 082-1 089.
|
| [24] |
TROIN M, MARTEL J L, ARSENAULT R, et al, 2022. Large-sample study of uncertainty of hydrological model components over North America[J]. Journal of Hydrology, 609: 127766. DOI: 10.1016/j.jhydrol.2022.127766.
|
| [25] |
YANG J T, YANG K, ZHANG F M, et al, 2023. Contributions of natural and anthropogenic factors to historical changes in vegetation cover and its future projections in the Yellow River Basin, China[J]. International Journal of Climatology, 43(14): 6 434-6 449.
DOI
URL
|