| [1] | 曹晓云, 肖建设, 乔斌, 等, 2021. 1961—2019年柴达木盆地沙尘强度时空变化特征[J]. 干旱气象, 39(1): 46-53. | 
																													
																						| [2] | 段伯隆, 刘新伟, 郭润霞, 等, 2021. “3·15”北方强沙尘暴天气成因分析[J]. 干旱气象, 39(4): 541-553. | 
																													
																						| [3] | 段佳鹏, 韩永翔, 赵天良, 等, 2013. 尘卷风对沙尘气溶胶的贡献及其与太阳辐射的关系[J]. 中国环境科学, 33(1): 43-48. | 
																													
																						| [4] | 韩超信, 汤耀国, 韩永翔, 等, 2021. 中国北方地区尘卷风时空分布的数值模拟[J]. 干旱区地理, 44(4): 1 003-1 010. | 
																													
																						| [5] | 韩永翔, 奚晓霞, 宋连春, 等, 2004. 青藏高原沙尘及其可能的气候意义[J]. 中国沙漠, 24(5): 588-592. | 
																													
																						| [6] | 姜学恭, 陈受钧, 云静波, 2014. 基于CALIPSO资料的沙尘暴过程沙尘垂直结构特征分析[J]. 气象, 40(3): 269-279. | 
																													
																						| [7] | 李耀辉, 张存杰, 高学杰, 2004. 西北地区大风日数的时空分布特征[J]. 中国沙漠, 24(6): 715-723. | 
																													
																						| [8] | 刘莹, 韩永翔, 杨文清, 等, 2018. 沙尘天气, 尘卷风对沙漠地区起沙量的贡献[J]. 中国沙漠, 38(6): 1 175-1 179. | 
																													
																						| [9] | 栾兆鹏, 赵天良, 韩永翔, 等, 2016. 干旱半干旱地区尘卷风研究进展[J]. 沙漠与绿洲气象, 10(2): 1-8. | 
																													
																						| [10] | 马明杰, 杨兴华, 何清, 等, 2019. 塔克拉玛干荒漠-绿洲过渡带尘卷风活动特征——以肖塘为例[J]. 中国沙漠, 39(2): 115-121. DOI
 | 
																													
																						| [11] | 沈建国, 孙照渤, 章秋英, 等, 2008. 干旱草原地区起沙通量的初步研究[J]. 中国沙漠, 28(6): 1 045-1 049. | 
																													
																						| [12] | 沈志宝, 申彦波, 杜明远, 等, 2003. 沙尘暴期间戈壁沙地起沙率的观测结果[J]. 高原气象, 22(6):545-550. | 
																													
																						| [13] | 吴焕波, 陈强, 谷新波, 等, 2018. 一次强沙尘天气过程及其对PM10时空分布的影响[J]. 干旱气象, 36(1): 117-123. DOI
 | 
																													
																						| [14] | 杨艳, 王杰, 田明中, 等, 2012. 中国沙尘暴分布规律及研究方法分析[J]. 中国沙漠, 32(2): 465-472. | 
																													
																						| [15] | 元天刚, 陈思宇, 康丽泰, 等, 2016. 1961—2010年中国北方沙尘源区沙尘强度时空分布特征及变化趋势[J]. 干旱气象, 34(6): 927-935. DOI
 | 
																													
																						| [16] | 张宏升, 朱好, 彭艳, 等, 2007. 沙尘天气过程沙地下垫面沙尘通量的获取与分析研究[J]. 气象学报, 65(5): 744-752. | 
																													
																						| [17] | 张钛仁, 宋振鑫, 王金艳, 等, 2008. 植被参数变化对沙尘起沙影响机理的数值模拟[J]. 高原气象, 27(2): 392-400. | 
																													
																						| [18] | 赵建华, 张强, 隆霄, 2012. 冲击起沙的概念模型[J]. 中国沙漠, 32(2): 323-330. | 
																													
																						| [19] | 赵建华, 张强, 袁铁, 等, 2005. 沙粒启动机制的理论分析[J]. 中国沙漠, 25(6): 853-862. | 
																													
																						| [20] | 赵霞, 张中伟, 2011. 1960—2008年新疆沙雅沙尘天气变化特征及原因分析[J]. 沙漠与绿洲气象, 5(4): 20-25. | 
																													
																						| [21] | 朱好, 张宏升, 2011. 沙尘释放通量外场观测和参数化研究进展[J]. 北京大学学报(自然科学版), 47(4): 768-776. | 
																													
																						| [22] | 祖拜旦, 依马木, 2015. 巴楚县1961—2010年沙尘天气的变化趋势分析[J]. 沙漠与绿洲气象, 9(5): 36-40. | 
																													
																						| [23] | ALFARO S C, GOMES L, 2001. Modeling mineral aerosol production by wind erosion: emission intensities and aerosol size distributions in source areas[J]. Journal of Geophysical Research: Atmospheres, 106(D16): 18 075-18 084. | 
																													
																						| [24] | BALME M, GREELEY R, 2006. Dust devils on Earth and Mars[J]. Reviews of Geophysics, 44(3), RG3003. DOI: 10.1029/2005RG000188. DOI
 | 
																													
																						| [25] | BULLARD J E, BADDOCK M, BRADWELL T, et al, 2016. High-latitude dust in the Earth system[J]. Reviews of Geophysics, 54(2): 447-485. DOI    
																																					URL
 | 
																													
																						| [26] | CAKMUR R V, MILLER R L, PERLWITZ J, et al, 2006. Constraining the magnitude of the global dust cycle by minimizing the difference between a model and observations[J]. Journal of Geophysical Research: Atmospheres, 111(D6), D06207. DOI: 10.1029/2005JD005796. DOI
 | 
																													
																						| [27] | CHKHETIANI O G, GLEDZER E B, ARTAMONOVA M S, et al, 2012. Dust resuspension under weak wind conditions: Direct observations and model[J]. Atmospheric Chemistry and Physics, 12(11): 5 147-5 162. | 
																													
																						| [28] | HAN Y, WANG K, LIU F, et al, 2016. The contribution of dust devils and dusty plumes to the aerosol budget in western China[J]. Atmospheric Environment, 126: 21-27. DOI    
																																					URL
 | 
																													
																						| [29] | HEINOLD B, TEGEN I, BAUER S, et al, 2011. Regional modelling of Saharan dust and biomass-burning smoke: Part 2: direct radiative forcing and atmospheric dynamic response[J]. Tellus B: Chemical and Physical Meteorology, 63(4): 800-813. DOI    
																																					URL
 | 
																													
																						| [30] | HESS G D, SPILLANE K T, 1990. Characteristics of dust devils in Australia[J]. Journal of Applied Meteorology and Climatology, 29(6): 498-507. | 
																													
																						| [31] | ITO J, TANAKA R, NIINO H, et al, 2010. Large eddy simulation of dust devils in a diurnally-evolving convective mixed layer[J]. Journal of the Meteorological Society of Japan, 88(1): 63-77. | 
																													
																						| [32] | JICKELLS T D, AN Z S, ANDERSEN K K, et al, 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate[J]. Science, 308(5718): 67-71. DOI    
																																																	PMID
 | 
																													
																						| [33] | JU T T, LI X L, ZHANG H S, et al, 2018. Parameterization of dust flux emitted by convective turbulent dust emission (CTDE) over the Horqin Sandy Land area[J]. Atmospheric Environment, 187: 62-69. DOI    
																																					URL
 | 
																													
																						| [34] | KLOSE M, SHAO Y, 2012. Stochastic parameterization of dust emission and application to convective atmospheric conditions[J]. Atmospheric Chemistry and Physics, 12(16): 7 309-7 320. | 
																													
																						| [35] | KLOSE M, SHAO Y, 2013. Large-eddy simulation of turbulent dust emission[J]. Aeolian Research, 8: 49-58. DOI    
																																					URL
 | 
																													
																						| [36] | KLOSE M, 2014. Convective turbulent dust emission: process, parameterization, and relevance in the Earth system[D]. Cologne: University of Cologne. | 
																													
																						| [37] | KLOSE M, SHAO Y, LI X, et al, 2014. Further development of a parameterization for convective turbulent dust emission and evaluation based on field observations[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(17): 10 441-10 457. | 
																													
																						| [38] | KLOSE M, SHAO Y, 2016. A numerical study on dust devils with implications to global dust budget estimates[J]. Aeolian Research, 22: 47-58. DOI    
																																					URL
 | 
																													
																						| [39] | KOCH J, RENNO N O, 2005. The role of convective plumes and vortices on the global aerosol budget[J]. Geophysical Research Letters, 32(18), L18806. DOI: 10.1029/2005GL023420. DOI
 | 
																													
																						| [40] | LAURENT B, MARTICORENA B, BERGAMETTI G, et al, 2006. Modeling mineral dust emissions from Chinese and Mongolian deserts[J]. Global and Planetary Change, 52(1/4): 121-141. DOI    
																																					URL
 | 
																													
																						| [41] | LI X L, KLOSE M, SHAO Y, et al, 2014. Convective turbulent dust emission (CTDE) observed over Horqin Sandy Land area and validation of a CTDE scheme[J]. Journal of Geophysical Research: Atmospheres, 119(16): 9 980-9 992. DOI    
																																					URL
 | 
																													
																						| [42] | LOOSMORE G A, HUNT J R, 2000. Dust resuspension without saltation[J]. Journal of Geophysical Research: Atmospheres, 105(D16): 20 663-20 671. DOI    
																																					URL
 | 
																													
																						| [43] | LU H, SHAO Y, 1999. A new model for dust emission by saltation bombardment[J]. Journal of Geophysical Research: Atmospheres, 104(D14): 16 827-16 842. | 
																													
																						| [44] | MAHOWALD N M, BAKER A R, BERGAMETTI G, et al, 2005. Atmospheric global dust cycle and iron inputs to the ocean[J]. Global Biogeochemical Cycles, 19(4), GB4025. DOI: 10.1029/2004GB002402. DOI
 | 
																													
																						| [45] | MARTICORENA B, BERGAMETTI G, 1995. Modeling the atmospheric dust cycle. 1. Design of a soil-derived dust emission scheme[J]. Journal of Geophysical Research: Atmospheres, 100(D8): 16 415-16 430. | 
																													
																						| [46] | PARK S U, CHOE A, LEE E H, et al, 2010. The Asian dust aerosol model 2 (ADAM2) with the use of normalized difference vegetation index (NDVI) obtained from the Spot4/vegetation data[J]. Theoretical and Applied Climatology, 101: 191-208. DOI    
																																					URL
 | 
																													
																						| [47] | RENNÓ N O, BURKETT M L, LARKIN M P, 1998. A simple thermodynamical theory for dust devils[J]. Journal of the Atmospheric Sciences, 55(21): 3 244-3 252. DOI    
																																					URL
 | 
																													
																						| [48] | SHAO Y, RAUPACH M R, FINDLATER P A, 1993. Effect of saltation bombardment on the entrainment of dust by wind[J]. Journal of Geophysical Research: Atmospheres, 98(D7): 12 719-12 726. | 
																													
																						| [49] | SHAO Y, 2001. A model for mineral dust emission[J]. Journal of Geophysical Research: Atmospheres, 106(D17): 20 239-20 254. DOI    
																																					URL
 | 
																													
																						| [50] | SHAO Y, 2004. Simplification of a dust emission scheme and comparison with data[J]. Journal of Geophysical Research: Atmospheres, 109(D10), D10202. DOI:10.1029/2003JD004372. DOI    
																																					URL
 | 
																													
																						| [51] | SHAO Y P, 2008. Physics and modelling of wind erosion[M]. Dordrecht: Springer Netherlands. | 
																													
																						| [52] | SHAO Y, FINK A H, KLOSE M, 2010. Numerical simulation of a continental-scale Saharan dust event[J]. Journal of Geophysical Research: Atmospheres, 115(D13), D13205. DOI: 10.1029/2009JD012678. DOI    
																																					URL
 | 
																													
																						| [53] | SHAO Y, ISHIZUKA M, MIKAMI M, et al, 2011. Parameterization of size-resolved dust emission and validation with measurements[J]. Journal of Geophysical Research: Atmospheres, 116(D8), D08203. DOI: 10.1029/2010JD014527. DOI
 | 
																													
																						| [54] | SINCLAIR P C, 1969. General characteristics of dust devils[J]. Journal of Applied Meteorology and Climatology, 8(1): 32-45. | 
																													
																						| [55] | SINCLAIR P C, 1973. The lower structure of dust devils[J]. Journal of the Atmospheric Sciences, 30(8): 1 599-1 619. DOI    
																																					URL
 | 
																													
																						| [56] | SOKOLIK I N, TOON O B, 1996. Direct radiative forcing by anthropogenic airborne mineral aerosols[J]. Nature, 381: 681-683. DOI
 | 
																													
																						| [57] | ZENDER C S, MILLER R, TEGEN I, 2004. Quantifying mineral dust mass budgets: terminology, constraints, and current estimates[J]. Eos, Transactions, American Geophysical Union, 85(48): 509-512. | 
																													
																						| [58] | ZIMON A D, 1982. Adhesion of dust and powder[M]. New York: Consultants Bureau. |