• CN 62-1175/P
  • ISSN 1006-7639
  • 双月刊
  • 中国科技核心期刊
  • 中国学术期刊综合评价数据库统计源期刊
  • 中文科技期刊数据库收录期刊

干旱气象, 2023, 41(6): 961-971 DOI: 10.11755/j.issn.1006-7639(2023)-06-0961

综述

气候康养旅游指数和人体舒适度研究进展

宋旭萍,1, 罗棋尹1, 韩云则1, 胡月1, 王锐1, 马盼2, 王式功,2

1.兰州大学公共卫生学院循证社会科学研究中心,甘肃 兰州 730000

2.成都信息工程大学大气科学学院/环境气象与健康研究院,四川 成都 610225

Research progress on tourism climate indices and human comfort

SONG Xuping,1, LUO Qiyin1, HAN Yunze1, HU Yue1, WANG Rui1, MA Pan2, WANG Shigong,2

1. Evidence-Based Social Science Research Center, Department of Social Medicine and Health Management, School of Public Health, Lanzhou University, Lanzhou 730000, China

2. College of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China

通讯作者: 王式功(1955—),男,山东安丘人,博士,教授,主要研究方向为气候康养和气候变化。E-mail:wangsg@cuit.edu.cn

责任编辑: 黄小燕;校对:邓祖琴

收稿日期: 2023-02-24   修回日期: 2023-06-5  

基金资助: 兰州大学在地国际化课程项目(KCJS202311)

Received: 2023-02-24   Revised: 2023-06-5  

作者简介 About authors

宋旭萍(1989—),女,甘肃定西人,博士,副教授,主要研究方向为气候康养和知证决策。E-mail:songxp@lzu.edu.cn

摘要

气候康养旅游指数是人体舒适度在气候康养旅游中的应用,旨在表征旅游目的地气候环境状态,是综合衡量旅游者气候幸福感的指标。本文检索了Web of Science和中国知网数据库进行可视化分析,阐释气候康养旅游和人体舒适度指数的内涵,总结气候康养旅游和人体舒适度指数的历史演进,探讨气候康养旅游指数研究存在的问题和对策,以期为未来气候康养旅游指数的深入研究和产业可持续发展提供理论支持。结果表明:(1)英文研究更关注旅游满意度和竞争力,而中文研究更关注人体舒适度、气候舒适度和康养旅游。(2)人体舒适度指标主要由气象因子和服装热阻等构成,旨在反映人体对环境舒适度的感受,而气候康养旅游指数不仅涵盖了气象因子、审美因素,还考虑了空气质量、氧含量等康养因素,旨在综合评估旅游活动的适宜性和旅行者气候康养的效果。

关键词: 气候康养旅游指数; 人体舒适度; 可视化分析; 内涵

Abstract

The TCIs (tourism climate indices) are applications of the human comfort in climate health tourism. TCIs aim to characterize the climate and environmental status of tourist destinations and provide a comprehensive measure of tourists’ climatic well-being. In this study, the Web of Science and China National Knowledge Infrastructure (CNKI) databases were searched for visualization analysis, explained the connotation of the TCIs and human comfort index, summarized the historical evolution of TCIs and the human comfort index, and discussed the existing problems and countermeasures of TCIs researches. In order to provide theoretical support for the in-depth research and sustainable development of TCIs in the future. The results are as follows: (1) The English studies were more concerned with tourism satisfaction and competitiveness, whereas the Chinese studies were more concerned with human comfort, climate comfort, and climate tourism. (2) Human comfort indices were primarily composed of meteorological factors and clothing insulation, which aims to reflect the human body's feeling of environmental comfort. The TCIs not only covers meteorological factors and aesthetic factors, but also considers health factors such as air quality and oxygen content, aiming to comprehensively evaluate the suitability of tourism activities and the effect of climate health of travelers.

Keywords: tourism climate indices; human comfort; visualization analysis; connotation

PDF (8951KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

宋旭萍, 罗棋尹, 韩云则, 胡月, 王锐, 马盼, 王式功. 气候康养旅游指数和人体舒适度研究进展[J]. 干旱气象, 2023, 41(6): 961-971 DOI:10.11755/j.issn.1006-7639(2023)-06-0961

SONG Xuping, LUO Qiyin, HAN Yunze, HU Yue, WANG Rui, MA Pan, WANG Shigong. Research progress on tourism climate indices and human comfort[J]. Arid Meteorology, 2023, 41(6): 961-971 DOI:10.11755/j.issn.1006-7639(2023)-06-0961

引言

人体舒适度是从气象角度评价不同气候条件下人体的舒适状态,根据机体与大气环境之间的热交换制定的生物气象指标(孙美淑和李山,2015)。过去一百年中,国内外研发了大量的人体舒适度指标,足见量化人体热舒适环境问题的迫切性和重要性。气候康养是指将人体从有害的气候环境转移到气候条件适宜且利于开展康养的气候康养地,从被动“避害”到主动“趋利”,达到降低疾病风险、增进机体机能和提升健康水平的目的(刘明华,2003;中国气象局公共气象服务中心和中国旅游研究院战略所,2020;林颖仪等,2021)。气候康养旅游指数(Tourism Climate Indices,TCIs)是与旅游相关的人体舒适度,旨在表征旅游目的地气候环境状态,综合计量旅行者气候幸福感(Mieczkowski,1985;De Freitas and Grigorieva,2015)。国际社会曾多次强调气候与健康相关指标在气候康养产业发展中的重要性,早在2001年世界气象组织(World Meteorological Organization,WMO)气候学委员会的气候与健康工作组就提出将气候与健康相关指标的科学构建作为未来两年的首要工作(WHO,2001)。气候康养旅游指数对提升气象部门的服务质量、辅助气候康养目的地决策和促进气候康养产业良性发展具有重要意义(吴昊旻等,2020;卢山等,2021)。

有研究(De Freitas and Grigorieva,2015;De Freitas and Grigorieva,2017)对人体舒适度指标进行系统分析,将160多个人体舒适度指标分成8类,并对其因子构成进行整理,然而该研究未纳入旅游相关的气候康养旅游指数。为促进气候康养旅游指数的构建及应用,系统整理气候康养旅游指数的历史演进及因子构成十分必要。但目前尚无研究系统梳理、对比分析国内外气候康养旅游指数和人体舒适度的内涵和历史演进,因此本文检索中外文数据库,对气候康养旅游指数相关研究现状进行可视化分析,然后基于典型指数的发表时间、研发方法和应用情况,阐释气候康养旅游指数和人体舒适度的内涵,介绍气候康养旅游指数和人体舒适度的演进,探讨气候康养旅游指数研究存在的问题和对策,以期为今后气候康养旅游指数研究提供参考,促进气候康养产业良性发展。

1 气候康养旅游指数研究的可视化现状

本研究系统检索了Web of Science(WOS)数据库和中国国家知识基础设施(China National Knowledge Infrastructure,CNKI)数据库,检索时间截至2023年2月4日,主要中文检索词包括:气候康养、森林康养、康养旅游、气候舒适、旅游气候、气候疗法、气候养生、人体舒适、指标、指数、度;主要英文检索词包括:climate health, thermal climate, holiday climate, forest well, forest therapy, spring therapy, forest travel, spa travel, tourism, health travel, healthy travel, nature travel, climate comfort, tourism comfort, tourist comfort, travel comfort, ocean well, ocean therapy, mountain well, mountain therapy, indicator, index, indices。经过数据清洗和整理,使用VOSviewer 1.6.18软件,针对WOS和CNKI检索的中英文文献结果,分析气候康养指标的中英文关键词、主要作者和研究机构。VOSviewer是荷兰莱顿大学的Van Eck等(2010)开发的一款免费文献计量分析软件,可用于绘制科学知识图谱,基于文献的共引和共被引原理,用可视化方法分析学科发展动态及趋势。可视化图谱中圆圈及字体大小代表权重高低,同一个聚类的圆圈颜色相同,圆圈间的连线表示其曾共同出现,可体现各关键词及作者间的联系。

中英文文献共检索1 852篇,发表于1979—2023年;英文文献共检索9 662篇,发表于1980—2023年。(1)关键词共现分析显示,英文研究主题以旅游满意度、竞争力、海滩、岛屿、生物多样性和气候适宜度等为主[图1(a)];中国学者对气候康养的关注程度较高,中文研究主题以人体舒适度、气候舒适度和康养旅游等为主[图1(b)]。气候舒适度的内涵是客观反映气候的舒适程度,而人体舒适度的内涵是反映人体主观感受的舒适程度,气候康养旅游指数则是人体舒适度在康养旅游中的应用,反映康养旅游目的地人体热舒适程度。关键词共现分析显示英文研究中关注度较高的指数为通用热气候指数(Universal Thermal Climate Index,UTCI)和湿球温度(Wet Bulb Temperature,WBT),中文研究中关注度较高的指数为风效指数(Wind Effect Index,WEI)、温湿指数(Temperature Humidity Index,THI)和风寒指数(Wind Chill Index,WCI)。(2)作者共现分析显示,英文研究作者以Rob Law(Han et al.,2021;Liao et al.,2022)、Jie Zhang(Nian et al.,2019;Liu et al.,2022)和Daniel Scott(Scott and McBoyle,2001;Rutty and Scott,2015;Scott et al.,2016)等人为主;中文研究作者以孙根年、马丽君、王式功和张京红等人在气候康养方向影响力大(马丽君等,2007;孙根年和马丽君,2007;王敏珍等,2012;卢山等,2021;林颖仪等,2021;孙根年,2022;张京红等,2022;张明洁等,2022)。(3)发文量前十机构分析显示(表1),英文研究以中国科学院、乌克兰教育科学部、香港理工大学、中国科学院大学和美国佛罗里达州立大学发文量最多;中文研究以南京信息工程大学、陕西师范大学、华东师范大学、成都信息工程大学和同济大学发文量最多。此外,Daniel Scott所属的加拿大滑铁卢大学发表了41篇相关研究被引2 062次,被引量位于第六,也是该领域重要的研究机构。

图1

图1   气候康养旅游指数中英文关键词可视化图

(a)WOS,(b)CNKI

Fig.1   Visualization of keywords in Chinese and English for the tourism climate indices

(a) WOS, (b) CNKI


图2

图2   气候康养旅游指数中英文研究作者可视化图

(a)WOS,(b)CNKI

Fig.2   Visualization of authors in Chinese and English for the tourism climate index

(a) WOS, (b) CNKI


表1   气候康养旅游指数研究发文量前十机构

Tab.1  Top 10 institutions of tourism climate index research publications

排名WOSCNKI
机构发文量/篇机构发文量/篇
1中国科学院224南京信息工程大学40
2乌克兰教育科学部117陕西师范大学35
3香港理工大学105华东师范大学26
4中国科学院大学100成都信息工程大学25
5佛罗里达州立大学84同济大学24
6马拉加大学82福建农林大学23
7法国国家科学研究中心70浙江农林大学22
8四川大学62中国科学院地理科学与资源研究所20
9布加勒斯特经济研究大学61东南大学19
10弗赖堡大学56兰州大学17

新窗口打开| 下载CSV


2 气候康养旅游指数和人体舒适度的演进

人体舒适度相关研究最早可追溯到20世纪初,根据人体舒适度的研发方法和发展趋势,可分为3个阶段(图3)。

图3

图3   气候康养旅游指数及人体舒适度演进

Fig.3   The evolutionary of tourism climate indices and the human comfort


第一阶段,经验公式:20世纪初,学者使用仪器直接测量环境舒适度,如1905年Haldane提出的湿球温度(Wet-bulb thermometer)和1916年Hill提出的卡他度(Kata thermometer)(Haldane,1905;Hill and Hargood-Ash,1919)。20世纪20年代开始出现的经验模型是以人类的主观感觉或生理反应为依据,以经验或统计学方法建立的人体舒适模型(Houghten and Yaglou,1923)。经验模型包括热环境、冷环境以及普适性环境(闫业超等,2013;孙美淑和李山,2015)。1923年Houghton和Yaglou提出了有效温度(Effective Temperature,ET)指数以评估热舒适度,开创了人体气候舒适度经验模型的先河(Houghten and Yaglou,1923)。1957年Yaglou和Minard提出了湿球黑球温度指数(Wet Bulb Globe Temperature,WBGT)以预防军事训练中的热损伤事故,WBGT也成为了世界上应用最为广泛的经验热环境评价指数(Yaglou and Minard,1957;孙美淑和李山,2015)。人体舒适度经验测度模型在“单设备测量”的基础上由“多要素建模”到“多指数组合”变化,并实现了从“单环境适用”到“环境普适”的演进(孙美淑和李山,2015)。

第二阶段,机理模型:合理的人体舒适度模型必须以人体热交换机制为基础,综合考虑环境因素、人体代谢、呼吸散热及服装热阻等因素的综合影响。20世纪70年代,丹麦学者Fanger发表了热舒适方程,提出了预测平均投票(Predicted Mean Vote,PMV)以反映对同一环境大多数人的热舒适度,至今仍被广泛使用(Fanger,1970;Höppe,1997)。1987年Mayer和Höppe基于慕尼黑人体热量平衡模型(Munich Energy Balance Model for Individuals,MEMI)推导出生理等效温度(Physiological Equivalent Temperature,PET),综合考虑了各种参数对舒适度的影响(Höppe,1984;Mayer and Höppe,1987)。然而,机理模型时代阶段仍存在对人体舒适度的复杂性认识不足的问题,导致对这一复杂系统的学科关系和表述较为单一。

第三阶段,学科交叉:进入21世纪,以通用热气候指数(Universal Thermal Climate Index,UTCI)为代表的指标研发反映出学界对人体舒适度系统性和国际化认识的日益提升,为气候康养等跨学科指标的研发提供了条件(Jendritzky et al.,2012)。Mieczkowski(1985)研发了第一个气候康养旅游指数TCI,是目前应用最为广泛的旅游气候舒适性评价模型。随着避暑、海滨、森林和高原等多类型气候康养旅游指数的诞生,人体舒适度研究呈现从单一研究到多元发展的趋势,以往单一分析气候或旅游的研究壁垒正逐渐被打破,为气候康养行业的方法学创新和学科交叉奠定了基础。

3 气候康养旅游指数和人体舒适度典型指标

3.1 人体舒适度指数

De Freitas and Grigorieva(2015)提出了人体舒适度指标的分类方法,并系统梳理了人体舒适度指标,截至2016年全球共计165种人体舒适度指标被相继提出(De Freitas and Grigorieva,2017),包括测量拟合指数(11个,占比6.7%)、单传感器指数(6个,占比3.6%)、代数或统计模型(37个,占比22.4%)、代理热应变指数(14个,占比8.5%)、代理热应力指数(16个,占比9.7%)、能量平衡应变指数(28个,占比17.0%)、能量平衡应力指数(42个,占比25.5%)和特定用途指数(11个,占比6.7%),表2列出不同人体舒适度指数类型的典型指数(表2)。

表2   人体舒适度典型指标

Tab.2  Typical indicators of human comfort

分类指数名称缩写研究地理与气象因子人体代谢、服装热阻及其他是否经过验证
测量拟合及单传感器指数卡他度Hill et al.,1916气温、风、湿度、长波辐射
空气温度TaMacpherson,1962气温
湿球温度WBTHaldane,1905湿球温度、环境气压
代数或统计模型风寒指数WCISiple and Passel,1945气温、风
温湿指数THIThom,1959气温、湿度
综合舒适度指标CCI陆鼎煌等,1984气温、湿度、风
基于“黄金分割法”的人体舒适度指数王式功等,2013气温、风、湿度、海拔、纬度
代理热应力和热应变指数生理效应指标EpRobinson et al.,1945气温、湿度服装、代谢率、心率、直肠温度、皮肤温度、出汗率
预计四小时排汗率P4SRMcArdle et al.,1947气温、湿球温度、风服装、代谢率、与适应者相关
有效温度ETHoughten and Yaglou,1923气温、湿球温度、风服装
风效指数WEITerjung,1966气温、风、太阳辐射
能量平衡应变和应力指数皮肤温度能量平衡指数STEBIDEXDe Freitas,1985;De Freitas,1986;De Freitas,1987气温、风、湿度、长波辐射、太阳辐射服装、代谢率
热力感受比TARIonides et al.,1945气温、平均辐射温度、湿度代谢率
通用热气候指数UTCIJendritzky et al.,2009气温、湿度、风、太阳辐射、长波辐射服装、代谢率
生理等效温度PETMayer and Höppe,1987气温、平均辐射温度、湿度、风服装、代谢率
特定用途指数热适应预测效应PEHAGivoni and Goldman,1973b气温、湿度代谢率、直肠温度、心率
生物气候距离指数BDIMateeva and Filipov,2003气温、湿度、风、太阳辐射、长波辐射代谢率

注: “—”表示“无”。

新窗口打开| 下载CSV


测量拟合及单传感器指数是早期常用仪器直接观测的结果来评定环境舒适度的产物,针对被动的代谢状态,是对热条件的绝对测量,包括卡他度(Kata thermometer)、湿球温度(Wet Bulb Temperature,WBT)等。卡他度指被加热到36.5 ℃时的卡他温度计的液球在单位时间、单位面积上所散发的热量,其综合考虑了气温、风、湿度、长波辐射4个因素的影响,可以反映温度、湿度和风速3者的综合散热效果,用来评价劳动条件的舒适程度(Hill et al.,1916;郭伏和钱省三,2006),被广泛应用于矿井作业、办公室舒适度测量、人体的热交换与平衡等领域,是最具影响力的仪器测定指标(闫业超等,2013;Hill and Hargood-Ash,1919);湿球温度(Wet Bulb Temperature,WBT)指湿空气的绝热饱和温度,综合表示了热环境的温度和湿度,是描述人体能量调节的相关变量,适用于温暖天气和热带高温影响及某些工业职业相关问题的研究(Haldane,1905; Dong et al.,2022)。

代数或统计模型是基于经验或统计学方法构建的人体舒适度模型,针对主动或被动的代谢状态,也是对热条件的绝对测量。其典型指数如风寒指数(Wind Chill Index,WCI),是指皮肤温度为33 ℃时皮肤表面的冷却速率,综合考虑了气温和风两种因素,体现了人们在冬天对温度和风速的综合感受(Siple and Passel,1945;王耕等,2022);WCI作为可预知未来的“体感”的指标,一方面有助于及时采取预防风寒的措施,另一方面可以指导人们更加科学、合理地来安排出行、工作和起居。此外还有不适指数(Discomfort Index),用于描述夏季湿热天气对人体的影响,之后进一步修正更名为温湿指数(Temperature Humidity Index,THI),THI通过气温和相对湿度的组合,反映人体对周围环境的热量交换,从而反映在不同气温和相对湿度的组合下人体感到舒适的程度,是目前最常见的舒适度指标之一(Thom,1957;Thom,1959)。

代理热应力和热应变指数是适用于热环境的人体舒适度经验模型,针对主动或被动的代谢状态,包括对热条件的绝对测量和相对测量。其典型指数如预计4 h排汗率(Predicted Four Hour Sweat Rate,P4SR),基于人体的排汗率,综合了气温、湿球温度、风、新陈代谢率及服装热阻等因素,可以很好地表示人体的热负荷状况,常用诺模图预测人体在特定环境下未来4 h的排汗量,单位时间排汗量越多时人体的热负荷越大(McArdle et al.,1947);风效指数(Wind Effect Index,WEI)主要反映人体对风、温度和日照的综合感受,即风速和气温对裸露人体热量散失的影响,综合考虑了气温、风、太阳辐射因素,既考虑了体表的散热,也考虑了太阳辐射后人体的增热,被广泛应用于气候舒适度的评价中(Terjung,1966;Havenith and Fiala,2015;王耕等,2022)。

能量平衡应变和应力指数基于人体与环境热交换理论,针对主动或被动的代谢状态,大部分是对热条件的绝对测量,如通用热气候指数(Universal Thermal Climate Index,UTCI),在国际生物气象学会(International Society of Biometeorology,ISB)和欧洲科技与技术发展合作行动(Cooperation in Science and Technology,COST)730号行动的倡议下,由多学科专家合作构建,是指引起与实际条件相同的模型响应的参考条件的空气温度(Air temperature,Ta)(Blazejczyk et al.,2013;Jendritzky et al.,2012),综合了气温、湿度、风、太阳辐射、长波辐射、服装、代谢率7个因素,被广泛应用于公共气象局、公共卫生服务、预防性规划和气候影响研究中,是当前考虑因素最全面、最具普适性的机理模型(Havenith and Fiala,2015)。

此外还有一些特定用途指数,如热适应的预测效应(Predicted effects of heat acclimatization,PEHA),是描述心率和直肠温度变化的一般模型,其综合了气温、湿度、代谢率、直肠温度和心率5个因素来表达直肠温度和心率的变化,反映在高温下工作时间与热适应的关联,适用于任何温度和湿度组合(Givoni and Goldman,1973a)。

3.2 气候康养旅游指数

根据《气候康养地评价》团体标准(中国气象局公共气象服务中心和中国旅游研究院战略所,2020)典型康养气候分型,结合康养地的气候和地形特征,将气候康养旅游指数分为综合(如旅游气候指数等)、避暑(如避暑旅游指数)、高原(如旅游气候适宜性指数)、海滨(如海滩气候指数)和森林(如森林综合保健指数)等(于飞等,2022)。为系统梳理国内外气候康养旅游指数,在以往研究中通过系统检索PubMed、Web of Science、Embase、中国知网和中国生物医学文献数据库,筛选纳入气候康养旅游指数共41个:其中综合性指标最多,有24个指数,占比58.5%,避暑指数7个(占比17.1%),海滨和高原指数均为4个(占比均为9.8%)、森林指数最少为2个(占比4.9%),表3列出不同气候康养指数类型的典型指数。

表3   气候康养旅游指数典型指标

Tab.3  Typical indicators of tourism climate indices

分类指标名称缩写研究地理与气象因子人体代谢、服装热阻及其他验证与否
综合度假气候指数:城市HCI:UrbanScott et al.,2016温度、湿度、风、降水、云量
气候康养旅游指数TCIMieczkowski,1985温度、湿度、风、降水、日照
气候旅游指数CITDe Freitas et al.,2008云量、风、降水
避暑避暑旅游指数TSI吴普等,2014气温、湿度、风、空气质量
避暑旅游气象指数MIST侯亚红等,2018温度、湿度、风、降水、日照、空气质量
高原旅游气候适宜性指数TCSITang et al.,2012温度、湿度、日照、太阳辐射、氧含量、大气压力
喀斯特洞穴康养功能指数IKCH贾真真等,2019气温、湿度、风、空气质量、空气离子
海滨海滩气候指数BCIMorgan et al.,2000降水、风、日照感觉温度、沐浴温度
滨海旅游气候指数CTCIGao et al.,2022温度、湿度、风、降水、日照、空气质量
森林森林综合保健指数FCHIZhu et al.,2021氧含量、空气质量
森林康养指数FHI郑自君等,2021温度、湿度、空气质量、海拔

注: “—”表示“无”。

新窗口打开| 下载CSV


典型的综合性气候康养旅游指数如Mieczkowski(1985)构建的第一个气候康养旅游指数(Tourism Climate Index,TCI),是衡量游客气候福祉的综合指标,其综合考虑了温度、湿度、风、降水、日照等气象因子,被广泛应用于评估特定气候对观光和购物等一般旅游活动的适宜性;2008年De Freitas等(2008)构建了第二代气候旅游指数(Climate Index for Tourism,CIT),综合考虑了生理、心理和物理3个维度的影响,优化了大气环境参数组合,提升了数值精度,得到了较好的应用。国内有学者(张富现,2015;蔚丹丹等,2021)将TCI翻译为旅游气候指数,在中医传统康养理念的背景和指导下,本文将其翻译为气候康养旅游指数更为贴切。

避暑旅游指数(Tourist Satisfaction Index,TSI)旨在评估旅游目的地发展避暑旅游的条件,综合考虑了气温、湿度、风和空气质量等气象因子,一方面广泛应用于协助游客选择避暑旅游目的地,另一方面也为目的地避暑旅游的发展与提升提供管理工具(吴普,2014;吴普等,2014)。旅游气候适宜性指数(Tourism Climate Suitability Index,TCSI)用于评估高原地区旅游气候适应性,包含温度、湿度、日照、太阳辐射、氧含量和大气压力等气象因子,对气候条件复杂的旅游目的地具有重要的科学意义和实用指导价值(Tang et al.,2012)。评估滨海地区气候康养条件的典型指数如海滩气候指数(Beach Climate Index,BCI)和滨海旅游气候指数(Coastal Tourism Climate Index,CTCI),包括降水、日照和风速等气象因子,有助于提高滨海旅游城市的吸引力和可持续发展(Morgan et al.,2000;Gao et al.,2022)。森林综合保健指数(Forest Comprehensive Healthcare Index,FCHI)是评估森林康养效益的典型指数,包含氧含量、空气质量等因子,不仅可以为森林治疗的时间和目的地提供必要的选择依据,还可以为森林健康效益的综合评价提供理论依据,有助于今后对森林健康环境的深入研究(Zhu et al.,2021)。

综上所述,人体舒适度指标主要由气温、风、湿度等气象因子和服装热阻及代谢率等构成,旨在反映人体对环境舒适度的感受。而气候康养旅游指数不仅涵盖了气象因子的温度因素(气温和湿度等)、物理因素(风和降水等)和审美因素(日照和云量等),还考虑了空气质量、氧含量等康养因素,旨在综合评估旅游活动的适宜性和旅行者气候康养的效果。由于康养地气候及地形特征的差异,其适宜的气候康养类型不同,避暑、海滨、森林和高原等多类型气候康养旅游指数逐渐诞生,指标因子构成也更加全面,使得气候康养旅游指数的科学性和实用性不断加强(杨雪艳等,2018)。

4 气候康养旅游指数研究的问题和对策

基于我国传统中医“天人合一,趋利避害”的养生准则,气候康养旅游可以帮助人群消除疲劳、加快康复,使身心趋于最佳状态(刘明华,2003;王乐和汪荣斌,2021)。随着气候康养旅游的日益盛行,国内外学者构建了大量的气候康养指标(Mieczkowski,1985;Morgan et al.,2000;De Freitas et al.,2008;Tang et al.,2012;吴普,2014;Scott et al.,2016;Zhu et al.,2021)。由于我国地域广阔,有多种气候类型的气候康养研究受到广泛关注,但存在以下问题需进一步探讨:

研究显示气温在气候康养指标中所占的权重最高,是目前气候康养指标构建的核心考量因子,其次为降水和日照(Blazejczyk,2001;Brandenburg and Arnberger,2001;Scott and McBoyle,2001)。然而,大气污染是影响人体健康的重要危险因素(Song et al.,2022;Ziou et al.,2022)。全球疾病负担(Global Burden of Disease,GBD)研究显示,空气污染是全球第四大死亡风险因素(GBD 2019 Diseases and Injuries Collaborators,2020)。冬季气温寒冷,此时气温对健康的影响大于污染,尤其对于老年人及高血压等慢性病患者(GBD 2019 Diseases and Injuries Collaborators,2020;陈蕾等,2021;黄开龙等,2021;徐静等,2021)。此外,大量研究表明气温和大气污染之间存在协同效应,增加心血管及呼吸系统疾病等发病的风险(Chen et al.,2017;Li et al.,2017;刘楚薇等,2020;Anenberg et al.,2020;Song et al.,2021)。建议未来在构建气候康养指标的过程中,纳入简易可得的空气质量指数,探究气温和污染的协同效应,以提升指标的科学性和准确性。

指标构建框架可以针对一个主题,提供一种系统的方法,展示环境和人类健康的联系以科学构建环境健康指标。一个稳健的框架需要有清晰的概念及范围,兼具灵活性、平衡性和实用性(Hambling et al.,2011)。气候康养指标的构建应基于指标构建框架,利用循证医学的方法,提升指标的科学性和适用性。Hambling等(2011)系统检索和评价了环境健康领域的指标构建框架,纳入的指标构建框架包括1990年经济合作与发展组织(the Organization for Economic Co-operation and Development,OECD)构建的压力-状态-响应(The Pressure-State-Response,PSR)框架、1997年联合国可持续发展委员会(the United Nations Commission on Sustainable Development,CSD)通过的驱动力-状态-响应(Driving force-State-Response,DSR)框架和1997世界卫生组织(World Health Organization,WHO)构建的驱动力-压力-状态-暴露-影响-行动(Driving Force-Pressure-State-Exposure-Effect-Action,DPSEEA)框架等(OECD,1993;Mortensen,1997),结果显示DPSEEA为最优框架(WHO,2001;Hambling et al.,2011)。然而,现有的人体舒适度及气候康养旅游指数在构建时未遵循系统结构化的框架,未来研究进行指标构建时应基于环境健康领域的指标构建框架,有助于更好地评估气候与人类健康之间的关系。

近年来全球范围内开展了关于气象因素健康影响的研究,探究了适宜气候条件下降低的疾病风险,发现低浓度的空气污染暴露、低湿度、风速和气压等气象因子与循环及呼吸系统疾病等存在正相关,而适宜的气温、湿度、风速和气压等气象条件可以降低疾病风险(Brauer et al.,2019;张莹等,2019;骆学勤等,2021;李欣和刘桃成,2022;Brauer et al.,2022)。基于气温等环境暴露风险评估模型,揭示不同气候康养地的最适气温阈值,量化趋利康养效应,评估疾病风险是未来该领域研究的重点。未来需进一步开展气候康养效应风险评估研究,通过不同区域和人群暴露风险评估模型等的研发,分析气候康养地适宜气温、优良空气和舒适环境降低的疾病风险,量化气候康养降低的疾病风险,为气候康养产业的可持续发展提供理论支持。

5 结语

为促进气候康养旅游指数的构建及应用,本文阐释了气候康养旅游指数和人体舒适度的内涵,系统梳理了气候康养旅游指数和人体舒适度的历史演进,探讨了气候康养旅游指数研发存在的问题和对策。本文旨在分类整理并解构气候舒适度指数和气候康养旅游指数典型指标,为气候舒适度指数和气候康养旅游指数的构建与应用提供理论支持。今后需进一步开展气候康养效应风险评估研究,量化气候康养地舒适环境降低的疾病风险及其趋利康养效应。建议未来应基于指标构建框架研发气候康养旅游指数,注重避寒等气候特征指数的研发,促进气候康养产业的多维度、可持续发展。

参考文献

陈蕾, 马盼, 黄开龙, , 2021.

北京市24 h变温对冠心病和脑梗死急诊人数的影响

[J]. 干旱气象, 39(3): 494-506.

[本文引用: 1]

郭伏, 钱省三, 2006. 人因工程学[M]. 北京: 机械工业出版社.

[本文引用: 1]

侯亚红, 息涛, 徐方姝, , 2018.

辽宁避暑旅游气候条件分析和气象指数研究

[J]. 气象与环境科学, 41(4): 34-40.

[本文引用: 1]

黄开龙, 林锦春, 马盼, , 2021.

气象条件对深圳市罗湖区上呼吸道感染就诊人数的影响

[J]. 干旱气象, 2021, 39(6): 995-1005.

[本文引用: 1]

贾真真, 黎有为, 高占冬, , 2019.

喀斯特洞穴康养适宜性评价——以贵州红果树景区天缘洞为例

[J]. 中国岩溶, 38(5): 815-822.

[本文引用: 1]

李欣, 刘桃成, 2022.

气象因素与流感发病相关关系的Meta分析

[J]. 湖南师范大学学报(医学版), 19(4): 146-150.

[本文引用: 1]

林颖仪, 张京红, 张亚杰, , 2021.

候鸟式旅居气候康养探析

[J]. 沙漠与绿洲气象, 15(6): 120-128.

[本文引用: 2]

刘楚薇, 连鑫博, 黄建平, 2020.

我国臭氧污染时空分布及其成因研究进展

[J]. 干旱气象, 38(3): 355-361.

[本文引用: 1]

刘明华, 2003.

气候环境可用于人体康复治疗

[J]. 上海环境科学, (增刊2): 57.

[本文引用: 2]

陆鼎煌, 崔森, 李重和, 1984.

北京城市绿化夏季小气候条件对人体的适宜度

[C]// 中国农学会林业气象研究会. 林业气象论文集. 北京: 气象出版社.

[本文引用: 1]

卢山, 郭勇, 郑江平, , 2021.

云贵高原3个旅游城市气候舒适度及其康养效应研究

[J]. 干旱气象, 39(2): 317-325.

[本文引用: 2]

骆学勤, 谢晓虹, 罗征秀, 2021.

气候因素对流感影响的系统评价

[J]. 中国实用儿科杂志, 36(5): 376-381.

[本文引用: 1]

马丽君, 孙根年, 李馥丽, , 2007.

陕西省旅游气候舒适度评价

[J]. 资源科学, 29(6): 40-44.

[本文引用: 1]

气候舒适的程度及持续时间的长短,是影响旅游地旅游季节长短的重要因素。本文利用陕西省30年气候资料,采用温湿指数、风寒指数和着衣指数指标,对陕西省各地区各月旅游气候舒适度进行了分析。结果显示,陕北各地区旅游舒适期在5月~9月,关中各地区的旅游舒适期多在4月、5月、9月和10月,汉中和安康舒适期在4月、5月、9月和10月,商洛的旅游舒适期在4月、5月、6月、8月和9月,不舒适期以榆林最长为4个月,以汉中和安康最短为0个月。由于地理位置和海拔高度的不同,陕西省内各个地区的旅游气候舒适度有相当的差异,在南北方向上差异尤其明显。冬季南北差异性表现尤为突出,舒适指数随纬度的升高而降低。全省可以分为陕南、关中、陕北、秦岭4个旅游气候区。

孙根年, 2022.

危机事件与旅游业的恢复

[J]. 旅游学刊, 37(7): 1-4.

[本文引用: 1]

孙根年, 马丽君, 2007.

西安旅游气候舒适度与客流量年内变化相关性分析

[J]. 旅游学刊, 22(7): 34-39.

[本文引用: 1]

孙美淑, 李山, 2015.

气候舒适度评价的经验模型:回顾与展望

[J]. 旅游学刊, 30(12): 19-34.

[本文引用: 4]

王耕, 俞乔山, 吴利华, 2022.

1960-2018年四川宜宾气候舒适度变化特征研究

[J]. 辽宁师范大学学报(自然科学版), 45(4): 504-514.

[本文引用: 2]

王乐, 汪荣斌, 2021.

天人合一思想对中医养生观的影响

[J]. 中国中医药现代远程教育, 19(12): 80-82.

[本文引用: 1]

王敏珍, 郑山, 王式功, , 2012.

1951—2008年中国主要城市风效指数的时空变化趋势

[J]. 干旱区资源与环境, 26(7): 64-70.

[本文引用: 1]

王式功, 马盼, 尚可政, , 2013. 一种基于黄金分割法构建人体舒适度计算方法: CN103106336A[P]. 2013-05-15.

[本文引用: 1]

蔚丹丹, 李山, 张粮锋, , 2021.

旅游气候舒适性评价: 模型优化与中国案例

[J]. 旅游学刊, 36(5): 14-28.

[本文引用: 1]

吴昊旻, 周国华, 姜燕敏, , 2020.

浙江丽水市度假气候适宜度评价

[J]. 干旱气象, 38(1): 66-72.

[本文引用: 1]

吴普, 2014.

中国城市避暑旅游发展研究

[J]. 中国旅游评论, (1): 25-39.

[本文引用: 2]

吴普, 周志斌, 慕建利, 2014.

避暑旅游指数概念模型及评价指标体系构建

[J]. 人文地理, 29(3): 128-134.

[本文引用: 2]

徐静, 刘华悦, 靳甜甜, , 2021.

气温对秦皇岛市儿童呼吸系统疾病的影响

[J]. 干旱气象, 39(2): 326-332.

[本文引用: 1]

闫业超, 岳书平, 刘学华, , 2013.

国内外气候舒适度评价研究进展

[J]. 地球科学进展, 28(10): 1 119-1 125.

[本文引用: 2]

杨雪艳, 傅帅, 徐士琦, , 2018.

吉林省消夏旅游期气候条件及舒适度分析

[J]. 干旱气象, 36(3): 492-500+506.

DOI      [本文引用: 1]

利用1951—2016年5—9月吉林省50个气象站气候资料,对消夏旅游期影响人们生活舒适度的主要气候要素进行统计,并构建旅游气候相关指数。结果表明:主要气候要素和旅游气候相关指数在1981年后均发生显著变化,各月平均气温升高,7—9月降水量减少,各月平均风速减小,6月、8月和9月的平均相对湿度略有减小,各月平均日照时长减小;各月温湿指数增大、避暑指数减小,6月、7月和9月旅游气候舒适度指数增大。吉林省消夏期具有“温湿适宜、日照适宜,多微风日,且白天少降水”的气候特点。消夏旅游期各地区的温湿指数处于“偏热、较舒适”水平,避暑指数较高,旅游气候舒适度指数处于“很舒适”及以上水平。

于飞, 张波, 吴战平, , 2022.

贵州省黔西南州四季康养气候资源研究

[J]. 气象与环境科学, 45(4): 53-59.

[本文引用: 1]

张富现, 2015.

旅游气候舒适度数值评价指标体系研究

[J]. 地理教学, (18): 4-11.

[本文引用: 1]

张京红, 张明洁, 张亚杰, , 2022.

海南气候康养指数的构建及评估

[J]. 热带生物学报, 13(4): 410-415.

[本文引用: 1]

张明洁, 张亚杰, 张京红, , 2022.

海南五指山市的气候特征及其康养资源分析

[J]. 海南大学学报(自然科学版), 40(2): 168-174.

[本文引用: 1]

张莹, 王式功, 张婕, , 2019.

成都市不同温度段对呼吸和心脑血管疾病死亡影响的归因风险评估

[J]. 中国卫生统计, 36(6): 818-823.

[本文引用: 1]

郑自君, 袁东升, 房鹏, , 2021.

攀西地区森林康养指数综合分析

[J]. 气象科技, 49(5): 815-822.

[本文引用: 1]

中国气象局公共气象服务中心, 中国旅游研究院战略所, 2020. 气候康养地评价: T/CMSA 0019—2020[S]. 北京: 中国气象服务协会.

[本文引用: 1]

ANENBERG S C, HAINES S, WANG E, et al, 2020.

Synergistic health effects of air pollution, temperature, and pollen exposure: a systematic review of epidemiological evidence

[J]. Environmental Health, 19(1): 130. https://doi.org/10.1186/s12940-020-00681-z.

URL     [本文引用: 1]

BLAZEJCZYK K, JENDRITZKY G, BRÖDE P, et al, 2013.

An introduction to the universal thermal climate index (UTCI)

[J]. Geographia Polonica, 86(1): 5-10.

[本文引用: 1]

BLAZEJCZYK K, 2001.

Assessment of recreational potential of bioclimate based on the human heat balance

[C]// MATZARAKIS A, DE FREITAS C R, eds. Proceedings of the first international workshop on climate, tourism and recreation. Halkidiki, Greece: International Society of Biometeorology: 133-152.

[本文引用: 1]

BRANDENBURG C, ARNBERGER A, 2001.

The influence of the weather upon recreation activities

[C]// MATZARAKIS A, DE FREITAS C R, eds. Proceedings of the first international workshop on climate, tourism and recreation. Halkidiki, Greece: International Society of Biometeorology: 123-132.

[本文引用: 1]

BRAUER M, BROOK J R, CHRISTIDIS T, et al, 2022.

Mortality-air pollution associations in low exposure environments (MAPLE): phase 2

[J]. Research Report (Health Effects Institute), 2022(212): 1-91.

[本文引用: 1]

BRAUER M, BROOK J R, CHRISTIDIS T, et al, 2019.

Mortality-air pollution associations in low-exposure environments (MAPLE): phase 1

[J]. Research Report (Health Effects Institute), 2019(203): 1-87.

[本文引用: 1]

CHEN F, FAN Z, QIAO Z, et al, 2017.

Does temperature modify the effect of PM10 on mortality? A systematic review and meta-analysis

[J]. Environmental Pollution, 224: 326-335.

[本文引用: 1]

DE FREITAS C R, 1985.

Assessment of human bioclimate based on thermal response

[J]. International Journal of Biometeorology, 29(2): 97-119.

PMID      [本文引用: 1]

DE FREITAS C R, 1986.

Human thermal climates of New Zealand

[R]. Wellington: New Zealand Meteorological Service.

[本文引用: 1]

DE FREITAS C R, 1987.

Bioclimates of heat and cold stress in New Zealand

[J]. Weather and Climate, 7(2): 55-60.

[本文引用: 1]

DE FREITAS C R, GRIGORIEVA E A, 2015.

A comprehensive catalogue and classification of human thermal climate indices

[J]. International Journal of Biometeorology, 59(1): 109-120.

DOI      PMID      [本文引用: 3]

The very large number of human thermal climate indices that have been proposed over the past 100 years or so is a manifestation of the perceived importance within the scientific community of the thermal environment and the desire to quantify it. Schemes used differ in approach according to the number of variables taken into account, the rationale employed, the relative sophistication of the underlying body-atmosphere heat exchange theory and the particular design for application. They also vary considerably in type and quality, as well as in several other aspects. Reviews appear in the literature, but they cover a limited number of indices. A project that produces a comprehensive documentation, classification and overall evaluation of the full range of existing human thermal climate indices has never been attempted. This paper deals with documentation and classification. A subsequent report will focus on evaluation. Here a comprehensive register of 162 thermal indices is assembled and a sorting scheme devised that groups them according to eight primary classification classes. It is the first stage in a project to organise and evaluate the full range of all human thermal climate indices. The work, when completed, will make it easier for users to reflect on the merits of all available thermal indices. It will be simpler to locate and compare indices and decide which is most appropriate for a particular application or investigation.

DE FREITAS C R, GRIGORIEVA E A, 2017.

A comparison and appraisal of a comprehensive range of human thermal climate indices

[J]. International Journal of Biometeorology, 61(3): 487-512.

DOI      PMID      [本文引用: 2]

Numerous human thermal climate indices have been proposed. It is a manifestation of the perceived importance of the thermal environment within the scientific community and a desire to quantify it. Schemes used differ in approach according to the number of variables taken into account, the rationale employed, and the particular design for application. They also vary considerably in type and quality, method used to express output, as well as in several other aspects. In light of this, a three-stage project was undertaken to deliver a comprehensive documentation, classification, and overall evaluation of the full range of existing human thermal climate indices. The first stage of the project produced a comprehensive register of as many thermal indices as could be found, 165 in all. The second stage devised a sorting scheme of these human thermal climate indices that grouped them according to eight primary classification categories. This, the third stage of the project, evaluates the indices. Six evaluation criteria, namely validity, usability, transparency, sophistication, completeness, and scope, are used collectively as evaluation criteria to rate each index scheme. The evaluation criteria are used to assign a score that varies between 1 and 5, 5 being the highest. The indices with the highest in each of the eight primary classification categories are discussed. The work is the final stage of a study of the all human thermal climatic indices that could be found in literature. Others have considered the topic, but this study is the first detailed, genuinely comprehensive, and systematic comparison. The results make it simpler to locate and compare indices. It is now easier for users to reflect on the merits of all available thermal indices and decide which is most suitable for a particular application or investigation.

DE FREITAS C R, SCOTT D, MCBOYLE G, 2008.

A second generation climate index for tourism (CIT): specification and verification

[J]. International Journal of Biometeorology, 52(5): 399-407.

DOI      PMID      [本文引用: 2]

Climate is a key resource for many types of tourism and as such can be measured and evaluated. An index approach is required for this task because of the multifaceted nature of weather and the complex ways that weather variables come together to give meaning to climate for tourism. Here we address the deficiencies of past indices by devising a theoretically sound and empirically tested method that integrates the various facets of climate and weather into a single index called the Climate Index for Tourism (CIT). CIT rates the climate resource for activities that are highly climate/weather sensitive, specifically, beach "sun, sea and sand" (3S) holidays. CIT integrates thermal (T), aesthetic (A) and physical (P) facets of weather, which are combined in a weather typology matrix to determine a climate satisfaction rating that ranges from very poor (1=unacceptable) to very good (7=optimal). Parameter A refers to sky condition and P to rain or high wind. T is the body-atmosphere energy balance that integrates the environmental and physiological thermal variables, such as solar heat load, heat loss by convection (wind) and by evaporation (sweating), longwave radiation exchange and metabolic heat (activity level). Rather than use T as a net energy (calorific) value, CIT requires that it be expressed as thermal sensation using the standard nine-point ASHRAE scale ("very hot" to "very cold"). In this way, any of the several body-atmosphere energy balance schemes available may be used, maximizing the flexibility of the index. A survey (N=331) was used to validate the initial CIT. Respondents were asked to rate nine thermal states (T) with different sky conditions (A). They were also asked to assess the impact of high winds or prolonged rain on the perceived quality of the overall weather condition. The data was analysed statistically to complete the weather typology matrix, which covered every possible combination of T, A and P. Conditions considered to be optimal (CIT class 6-7) for 3S tourism were those that were "slightly warm" with clear skies or scattered cloud (<or=25% cloud). Acceptable conditions (CIT=4-5) fell within the thermal range "indifferent" to "hot" even when the sky was overcast. Wind equal to or in excess of 6 m/s (22 km/h) or rain resulted in the CIT rating dropping to 1 or 2 (unacceptable) and was thus an override of pleasant thermal conditions. Further cross-cultural research is underway to examine whether climate preferences vary with different social and cultural tourist segments internationally.

DONG J, BROENNIMANN S, HU T, et al, 2022.

GSDM-WBT: global station-based daily maximum wet-bulb temperature data for 1981-2020

[J]. Earth System Science Data, 14(12): 5 651-5 664.

[本文引用: 1]

FANGER P O, 1970. Thermal comfort: analysis and applications in environmental engineering[M]. Copenhagen: Danish Technical Press.

[本文引用: 1]

GAO C, LIU J, ZHANG S, et al, 2022.

The coastal tourism climate index (CTCI): development, validation, and application for Chinese coastal cities

[J]. Sustainability, 14(3), 1425. https://doi.org/10.3390/su14031425.

URL     [本文引用: 2]

GBD 2019

Diseases and Injuries Collaborators, 2020. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

[J]. Lancet, 396(10258): 1 204-1 222.

[本文引用: 3]

GIVONI B, GOLDMAN R F, 1973a.

Predicting effects of heat acclimatization on heart rate and rectal temperature

[J]. Journal of Applied Physiology, 35(6): 875-879.

[本文引用: 1]

GIVONI B, GOLDMAN R F, 1973b.

Predicting heart rate response to work, environment, and clothing

[J]. Journal of Applied Physiology, 34(2): 201-204.

[本文引用: 1]

HALDANE J S, 1905.

The influence of high air temperatures: No.1

[J]. The Journal of Hygiene, 5(4): 494-513.

[本文引用: 3]

HAMBLING T, WEINSTEIN P, SLANEY D, 2011.

A review of frameworks for developing environmental health indicators for climate change and health

[J]. International Journal of Environmental Research and Public Health, 8(7): 2 854-2 875.

[本文引用: 3]

HAN J, ZUO Y, LAW R, et al, 2021.

Service quality in tourism public health: trust, satisfaction, and loyalty

[J]. Frontiers in Psychology, 12, 731279. https://doi.org/10.3389/fpsyg.2021.731279.

URL     [本文引用: 1]

HAVENITH G, FIALA D, 2015.

Thermal indices and thermophysiological modeling for heat stress

[J]. Comprehensive Physiology, 6(1): 255-302.

DOI      PMID      [本文引用: 2]

The assessment of the risk of human exposure to heat is a topic as relevant today as a century ago. The introduction and use of heat stress indices and models to predict and quantify heat stress and heat strain has helped to reduce morbidity and mortality in industrial, military, sports, and leisure activities dramatically. Models used range from simple instruments that attempt to mimic the human-environment heat exchange to complex thermophysiological models that simulate both internal and external heat and mass transfer, including related processes through (protective) clothing. This article discusses the most commonly used indices and models and looks at how these are deployed in the different contexts of industrial, military, and biometeorological applications, with focus on use to predict related thermal sensations, acute risk of heat illness, and epidemiological analysis of morbidity and mortality. A critical assessment is made of tendencies to use simple indices such as WBGT in more complex conditions (e.g., while wearing protective clothing), or when employed in conjunction with inappropriate sensors. Regarding the more complex thermophysiological models, the article discusses more recent developments including model individualization approaches and advanced systems that combine simulation models with (body worn) sensors to provide real-time risk assessment. The models discussed in the article range from historical indices to recent developments in using thermophysiological models in (bio) meteorological applications as an indicator of the combined effect of outdoor weather settings on humans.Copyright © 2015 John Wiley & Sons, Inc.

HILL L, GRIFFITH O W, FLACK M, 1916.

The measurement of the rate of heat-loss at body temperature by convection, radiation, and evaporation

[J]. Philosophical Transactions of the Royal Society B Biological Sciences, 207(335/347): 183-220.

[本文引用: 2]

HILL L, HARGOOD-ASH D, 1919.

On the cooling and evaporative powers of the atmosphere, as determined by the kata-thermometer

[J]. Proceedings of the Royal Society of London Series B, Containing Papers of a Biological Character, 90(632): 438-447.

[本文引用: 2]

HÖPPE P, 1984. Die energiebilanz des menschen[D]. München: University of München.

[本文引用: 1]

HÖPPE P, 1997.

Aspects of human biometeorology in past, present and future

[J]. International Journal of Biometeorology, 40(1): 19-23.

PMID      [本文引用: 1]

Human biometeorology is quite an old science: during the times of Hippokrates in ancient Greece the influence of weather changes on physiological processes in the human body were considered to exist. However, not until the progress in modern statistics, physics and physiology in the course of this century provided quantitative methods did human-biometeorology become an acknowledged natural science. In the first half of this century primarily the explanation of the phenomena of reactions of the body to weather changes was the general objective. In the second half of this century quantitative descriptions of thermal interchanges between the human body and the environment by means of energy balance models of the human body have gained increasing importance. The methods of modern human biometeorology increasingly are acknowledged by workers in disciplines of potential application, such as urban or regional planners or air conditioning engineers. Human biometeorology tries to assess all atmospheric influences in its entirety, including the air pollution pattern. The discipline considers itself as branch of science which is tied closely to environmental meteorology and environmental medicine.

HOUGHTEN F C, YAGLOU C P, 1923.

Determining lines of equal comfort

[J]. Journal of the American Society of Heating and Ventilating Engineers, 29: 165-176.

[本文引用: 3]

IONIDES M, PLUMMER J, SIPLE P A, 1945.

The thermal acceptance ratio: report from climatology and environmental protection section

[R]. United States: Office of the US Quartermaster General.

[本文引用: 1]

JENDRITZKY G, DE DEAR R, HAVENITH G, 2012.

UTCI—why another thermal index?

[J]. International Journal of Biometeorology, 56(3): 421-428.

[本文引用: 2]

JENDRITZKY P G, HAVENITH G, WEIHS P, et al, 2009.

Towards a universal thermal climate index UTCI for assessing the thermal environment of the human being: final evaluation report

[R]. Freiburg:COST Action 730.

[本文引用: 1]

LI J, WOODWARD A, HOU X Y, et al, 2017.

Modification of the effects of air pollutants on mortality by temperature: a systematic review and meta-analysis

[J]. Science of the Total Environment, 575: 1 556-1 570.

[本文引用: 1]

LIAO C, ZUO Y, XU S, et al, 2022.

Dimensions of the health benefits of wellness tourism: a review

[J]. Frontiers in Psychology, 13, 1071578. https://doi.org/10.3389/fpsyg.2022.1071578.

URL     [本文引用: 1]

LIU Y, ZHANG J, SHEN S, et al, 2022.

More information, greater appreciation: the correlation between background information and aesthetic judgment of tourist crafts

[J]. Behavioral Science (Basel), 12(7): 217. https://doi.org/10.3390/bs12070217.

URL     [本文引用: 1]

MACPHERSON R K, 1962.

The assessment of the thermal environment. a review

[J]. British Journal of Industrial Medicine, 19(3): 151-164.

[本文引用: 1]

MATEEVA Z, FILIPOV A, 2003.

Bioclimatic distance index in the Rila-and-Rhodopy area of Bulgaria

[J]. Postępy w badaniach klimatycznych i bioklimatycznych, Prace Geograficzne, 188: 295-302.

[本文引用: 1]

MAYER H, HÖPPE P, 1987.

Thermal comfort of man in different urban environments

[J]. Theoretical and Applied Climatology, 38(1): 43-49.

[本文引用: 1]

MCARDLE B, DUNHAM W, HÖLLING H, et al, 1947.

The prediction of the physiological effects of warm and hot environments

[R]. Renewable Northwest Project Report 47/391. London:Medical Resource Council.

[本文引用: 2]

MIECZKOWSKI Z, 1985.

The tourism climatic index: a method of evaluating world climates for tourism

[J]. Canadian Geographer, 29(3): 220-233.

[本文引用: 5]

MORGAN R, GATELL E, JUNYENT R, et al, 2000.

An improved user-based beach climate index

[J]. Journal of Coastal Conservation, 6(1): 41-50.

[本文引用: 3]

MORTENSEN L F, 1997. The driving force-state-response framework used by CSD[M]//MOLDAN B, BILLHARZ S, MATRAVERS R. S Sustainability Indicators: a report on the project on indicators of sustainable development. England: 47-53.

[本文引用: 1]

NIAN S, ZHANG J, ZHANG H, et al, 2019.

Two sides of a coin: a crisis response perspective on tourist community participation in a post-disaster environment

[J]. International Journal of Environmental Research and Public Health, 16(12), 2073. https://doi.org/10.3390/ijerph16122073.

URL     [本文引用: 1]

OECD, 1993.

OECD core set of indicators for environmental performance reviews: a synthesis report by the Group on the State of the Environment

[R]. Environment Monographs, 83: 1-39.

[本文引用: 1]

ROBINSON S, TURRELL E S, GERKING S D, 1945.

Physiologically equivalent condition of air temperature and humidity

[J]. American Journal of Physiology, 143(1): 21-32.

[本文引用: 1]

RUTTY M, SCOTT D, 2015.

Bioclimatic comfort and the thermal perceptions and preferences of beach tourists

[J]. International Journal of Biometeorology, 59(1): 37-45.

DOI      PMID      [本文引用: 1]

The largest market segment of global tourism is coastal tourism, which is strongly dependent on the destination's thermal climate. To date, outdoor bioclimatic comfort assessments have focused exclusively on local residents in open urban areas, making it unclear whether outdoor comfort is perceived differently in non-urban environments or by non-residents (i.e. tourists) with different weather expectations and activity patterns. This study provides needed insight into the perception of outdoor microclimatic conditions in a coastal environment while simultaneously identifying important psychological factors that differentiate tourists from everyday users of urban spaces. Concurrent micrometeorological measurements were taken on several Caribbean beaches in the islands of Barbados, Saint Lucia and Tobago, while a questionnaire survey was used to examine the thermal comfort of subjects (n = 472). Universal Thermal Climate Index (UTCI) conditions of 32 to 39 °C were recorded, which were perceived as being "slightly warm" or "warm" by respondents. Most beach users (48 to 77 %) would not change the thermal conditions, with some (4 to 15 %) preferring even warmer conditions. Even at UTCI of 39 °C, 62 % of respondents voted for no change to current thermal conditions, with an additional 10 % stating that they would like to feel even warmer. These results indicate that beach users' thermal preferences are up to 18 °C warmer than the preferred thermal conditions identified in existing outdoor bioclimatic studies from urban park settings. This indicates that beach users hold fundamentally different comfort perceptions and preferences compared to people using urban spaces. Statistically significant differences (p ≤ .05) were also recorded for demographic groups (gender, age) and place of origin (climatic region).

SCOTT D, MCBOYLE G, 2001.

Using a 'tourism climate index' to examine the implications of climate change for climate as a tourism resource

[C]// MATZARAKIS A, DE FREITAS C R, eds. Proceedings of the first international workshop on climate, tourism and recreation. Halkidiki, Greece: International Society of Biometeorology, 69-88.

[本文引用: 2]

SCOTT D, RUTTY M, AMELUNG B, et al, 2016.

An inter-comparison of the holiday climate index (HCI) and the tourism climate index (TCI) in Europe

[J]. Atmosphere, 7(6), 80. https://doi.org/10.3390/atmos7060080.

URL     [本文引用: 3]

SIPLE P A, PASSEL C F, 1945.

Measurements of dry atmospheric cooling in subfreezing temperatures

[J]. Proceedings of the American Philosophical Society, 89(1): 177-199.

[本文引用: 2]

SONG X, HU Y, MA Y, et al, 2022.

Is short-term and long-term exposure to black carbon associated with cardiovascular and respiratory diseases? A systematic review and meta-analysis based on evidence reliability

[J]. BMJ Open, 12(5), e049516. https://doi.org/10.1136/bmjopen-2021-049516.

URL     [本文引用: 1]

SONG X, JIANG L, WANG S, et al, 2021.

The impact of main air pollutants on respiratory emergency department visits and the modification effects of temperature in Beijing, China

[J]. Environmental Science and Pollution Research, 28(6): 6 990-7 000.

[本文引用: 1]

TANG C, ZHONG L, KRISTEN M, et al, 2012.

A comprehensive evaluation of tourism climate suitability in Qinghai Province, China

[J]. Journal of Mountain Science, 9(3): 403-413.

[本文引用: 3]

TERJUNG W H, 1966.

Physiologic climates of the conterminous United States: a bioclimatic classification based on man

[J]. Annals of the Association of American Geographers, 56(1): 141-179.

[本文引用: 2]

THOM E C, 1957.

A new concept of cooling degree days

[J]. Air Condit Heat and Ventil, 54(6): 73-80.

[本文引用: 1]

THOM E C, 1959.

The discomfort index

[J]. Weatherwise, 12(2): 57-61.

[本文引用: 2]

VAN ECK N J, WALTMAN L, DEKKER R, et al, 2010.

A comparison of two techniques for bibliometric mapping: multidimensional scaling and VOS

[J]. Journal of the American Society for Information Science and Technology, 61(12): 2 405-2 416.

[本文引用: 1]

WHO, 2001.

Monitoring health impacts of climate change in Europe: meeting report

[R]. Copenhagen: WHO Regional Office for Europe.

[本文引用: 2]

YAGLOU C P, MINARD D, 1957.

Control of heat casualties at military training centers

[J]. AMA Archives of Industrial Health, 16(4): 302-316.

[本文引用: 1]

ZHU S, HU F, HE S, et al, 2021.

Comprehensive evaluation of healthcare benefits of different forest types: a case study in Shimen National Forest Park, China

[J]. Forests, 12(2), 207. https://doi.org/10.3390/f12020207.

URL     [本文引用: 3]

ZIOU M, THAM R, WHEELER A J, et al, 2022.

Outdoor particulate matter exposure and upper respiratory tract infections in children and adolescents: a systematic review and meta-analysis

[J]. Environmental Research, 210, 112969. https://doi.org/10.1016/j.envres.2022.112969.

URL     [本文引用: 1]

/