基于ISCCP和CMORPH-AWS资料的中国南方地区云与降水关系分析
Relationship between the clouds and precipitation over southern China based on ISCCP and CMORPH-AWS data
通讯作者: 王维佳(1980—),女,四川自贡人,高级工程师,主要从事大气物理研究. E-mail:wjwang1998@163.com。
责任编辑: 刘晓云
收稿日期: 2021-09-1 修回日期: 2022-03-20
基金资助: |
|
Received: 2021-09-1 Revised: 2022-03-20
作者简介 About authors
范思睿(1986—),女,四川内江人,高级工程师,主要从事大气物理研究.E-mail:fansr110@163.com。
探究中国南方地区不同高度云量的时空变化及其与降水的关系,可了解云在降水中的作用和反馈机制并为空中云水资源开发提供基础和依据。利用国际卫星云气候计划(International Satellite Cloud Climatology Project, ISCCP)中D系列卫星观测云数据集12 a(1998—2009年)资料,详细分析了中国南方地区总云量、低云量、中云量、高云量的时空分布特征,并结合中国自动站(automatic weather station, AWS)降水数据与美国国家海洋和大气管理局(National Oceanic and Atmospheric Administration, NOAA)气候预测中心(Climate Prediction Center, CPC) MORPHing technique(CMORPH)卫星反演降水产品融合的格点降水产品(CMORPH-AWS)分析了云量与降水强度、降水次数的关系。结果表明:(1)在空间分布上,中国南方地区总云量和中云量空间分布类似,高值中心位于四川盆地、贵州、重庆交接处,低值中心位于云南地区;高云主要分布在南方地区的西部,表现为由西向东逐渐减少的分布特征;低云主要分布在南方地区的东南部,表现为沿海地区向内陆地区逐渐减少的空间分布特征。(2)在季节变化上,总云量和高云量为夏季多、冬季少,总云量高值中心随季节位移,高云量随季节变化,中云量和低云量为冬季多夏季少,季节性变化小。(3)随着总云量和高云量的增多,降水强度增大、月降水次数减小;随着中云量增多,月降水次数增加、降水强度无明显变化。(4)随着层积云、层云云量的增加,降水强度和月降水次数减小;随着高积云、高层云、深对流云云量的增加,降水强度增加但月降水次数减小。总体而言,中国南方地区云量和降水关系密切,特别是总云量和高云量对降水强度和降水次数影响较大,中云量仅对降水次数影响较大,层积云、层云、高积云、高层云、深对流云云量对降水强度和降水次数影响较大,卷云、卷层云云量仅对降水强度影响较大。
关键词:
This paper addresses the spatial and temporal variation of cloud cover at different heights over southern China and its relationship with precipitation, which is useful for understanding the role of clouds in precipitation and feedback mechanisms as well as provides a basis and foundation for the development of cloud water resources. Based on 12 years (1998-2009) data from the D dataset of International Satellite Cloud Climatology Project (ISCCP), the temporal and spatial distribution characteristics of total cloud cover, low cloud cover, medium cloud cover and high cloud cover were analyzed over Southern China. And based on the CMORPH-AWS merged gridded precipitation product which combined National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center (CPC) morphing technique (CMORPH) with precipitation observations from automatic weather stations, the relationships between the cloud cover and precipitation intensity, precipitation frequency were analyzed over southern China. The results are as follows: (1) The spatial distribution of total cloud cover and medium cloud cover over southern China was similar. The high-value center was located over the junction of Sichuan Basin, Guizhou and Chongqing, while the low-value center was located in Yunnan. High clouds were distributed in the western part of southern China, and decreased from west to east. Low clouds were mainly distributed over the southeastern part of southern China. Overall, low cloud cover decreased from coastal area to inland area. (2) The seasonal variation of total cloud cover and high cloud cover was similar, with cloud cover more in summer and less in winter. Moreover, the high value center of total cloud cover shifted with the seasons. The high cloud cover changed seasonally. The moderate cloud cover and low cloud cover were more in winter and less in summer, with small seasonal changes. (3) With the increase of total cloud cover and high cloud cover, the precipitation intensity increased but the monthly precipitation frequency decreased. With the increase of medium cloud cover, the frequency of monthly precipitation increased, while effect on precipitation intensity varied little. (4) With the increase of cloud cover of stratocumulus and stratus clouds, precipitation intensity and monthly precipitation frequency decreased. With the increase of cloud cover of altocumulus, altostratus and deep convection clouds, precipitation intensity increased while monthly precipitation frequency decreased. In general, cloud cover and precipitation were closely related over southern China, especially total cloud cover and high cloud cover had a greater influence on precipitation intensity and precipitation frequency, while medium cloud cover only had a greater impact on precipitation frequency. The cloud cover of stratocumulus, stratus, altocumulus, altostratus, deep convection clouds had a greater influence on precipitation intensity and precipitation frequency, while cloud cover of cirrus and cirrostratus only had a greater impact on precipitation intensity.
Keywords:
本文引用格式
范思睿, 王维佳, 陈勇航.
FAN Sirui, WANG Weijia, CHEN Yonghang.
引言
降水是云中微物理过程和动力过程相互作用的结果,云和降水之间的转化是互相制约、不断调整、自我适应的复杂过程,大部分研究指出总云量和降水有密切关系,但在不同地区云和降水关系不同。陈勇航等[15-16]利用国际卫星云气候计划(International Satellite Cloud Climatology Project,ISCCP)云资料研究了西北地区云量与降水的关系,指出降水与高、中云量的空间分布有关,特别是层状云的云量和降水量关系密切,而积状云和层积云的云量与降水关系不明显。李跃清等[17]基于ISCCP云资料研究得到西南大部分地区的高层云与雨量、雨日关系密切,贵州、重庆地区夏季的雨层云云量与雨日、雨量具有较好的关系,说明西南地区发生降水时,一般是雨层云和高层云相伴存在。李昀英等[18]利用模式分析了云和降水之间的关系,发现中国东部云带和降水有较好的对应关系。孙丽等[19]利用Aqua/CERES(Clouds and the Earth's Radiant Energy System)数据研究发现东北地区总云量和降水之间关系密切,总云量随着小时雨强增强而增加。关于云量和降水之间的关系已经取得了一些研究进展,但由于不同高度和不同类型云的云水含量、云光学厚度、粒子相态、云内温度不同[14],其降水机制和对降水的影响不同,目前研究不同高度和不同类型云的云量和降水之间关系尚不多见。同时,早期云的观测主要是地面人工观测,容易受到观测人员主观因素和观测位置的影响。随着遥感技术的提高,卫星观测云资料可以弥补地面观测资料的不足。因此,本文利用长时间序列的ISCCP云资料集,结合中国自动站(automatic weather station, AWS)降水数据与美国国家海洋和大气管理局(National Oceanic and Atmospheric Administration, NOAA)气候预测中心(Climate Prediction Center, CPC) MORPHing technique(CMORPH)卫星反演降水产品融合的格点降水产品(CMORPH-AWS)研究不同高度云的时空变化,探讨云和降水的关系,不仅有助于了解云在降水中的作用和反馈机制,而且对空中云水资源开发以及气候模式的改进有指导意义。
1 资料及处理
ISCCP是世界气候研究计划的一个子计划,经过多年观测建立的云气候数据集提供多种云参数资料,该资料由4颗地球同步卫星(GMS、METEOSAT、GOES、INSAT)和至少1颗太阳同步极轨卫星(NOAA卫星)获取的辐射值,经过云识别、辐射分析等处理得到[20⇓-22]。本文选用1998年1月至2009年10月ISCCP的D1和D2云资料,D1资料的时间分辨率为3 h,每天8个时次(00:00、03:00、06:00、09:00、12:00、15:00、18:00、21:00,世界时),D2是D1的月平均数据集,包含云量、云水路径、云光学厚度、云顶温度、云顶气压、反射率等多种云参数,其空间分辨率为280 km×280 km。计算云量的空间分布选用D2月平均资料,在计算降水和云量关系时,为了匹配日降水资料选用D1日资料。
为了让CMORPH-AWS融合降水数据和ISCCP云参量资料的格点匹配,将CMORPH-AWS融合降水数据按280 km×280 km作区域平均。将日降水量大于0.1 mm作为有效降雨日;以日降水量大小代表降水强度。绘制降水强度和云量的散点图时数据为各格点有效降雨日的降水强度和云量;绘制月降水次数和云量的散点图时月降水次数为各格点某月有效降雨日总和,云量为各格点某月有效降雨日云量的平均值(该月有效降雨日云量总和/月有效降雨日数)。
图1
2 中国南方云量和降水的空间分布
图2为1998—2009年中国南方地区年平均云量空间分布。可以看出,南方地区总云量的高值中心主要集中在30°N附近,即四川盆地、重庆、贵州交接处,云量极大值达78%,而少云中心位于云南地区,极小值为52%。这与LI等[32]、张琪等[33]分别利用华东和西南地区地面观测云量资料得到的结论一致。位于四川盆地的高值中心是在青藏高原大地形和西风气流的共同作用下形成的[32]。同时中国南方地区是云光学厚度、云水路径的高值区,和云量的高值区相对应[14,31]。夏季,中国西南地区受夏季风影响,来自孟加拉湾、西太平洋和南海等地的水汽输送增强,在云贵高原的地形抬升下,成为云水高值区,有利云的形成和发展[34]。南方地区低云量较少,为0~28%,低云量由沿海地区向内陆地区逐渐减少。中云量空间分布和总云量相似,中云量高值中心位于四川盆地、重庆、湖南、贵州上空,极大值达48%,中低云量空间分布和丁守国等[6]研究结论一致。研究表明,西风气流遇到青藏高原,在西侧产生分流,在东侧形成辐合,加之东侧的四川盆地常年湿度较高,有利于层状云的形成,而稳定的大气层结是南方地区中云富集的原因,悬空逆温层限制了云向上发展,最终在高原东侧形成了大范围的层状中云[25,32]。中国高云量主要分布在青藏高原,极大值达71%,云量高值中心范围和青藏高原地形基本一致。中国南方地区高云量为15%~35%,表现为从川西高原向沿海地区逐渐减少。对于低云量的分布特征,观测资料和卫星探测资料数值差别较大,ISCCP低云量相对地面观测偏少,特别是在青藏高原地区[26,35],造成这种明显差异的原因有两个:一是在于观测方法的不同,ISCCP采用卫星观测,探测到的低云量是没有被高中云遮挡的低云量,从而偏少,而人工观测的高云量是没有被中低云遮挡的高云量,对高云的探测会偏少;二是在于云分类方法不同,有些云在地面观测中被归为低云,但在ISCCP 云分类中被归为中云[17]。
图2
图2
1998—2009年中国南方地区年平均云量空间分布(单位:%)
(a)总云量,(b)低云量,(c)中云量,(d)高云量
Fig.2
Spatial distribution of annual mean cloud cover during 1998-2009 over southern China (Unit:%)
(a)total cloud cover, (b)low cloud cover, (c)medium cloud cover, (d)high cloud cover
为探讨降水和云量之间的关系,分析了CMORPH-AWS融合降水数据多年平均空间分布(图3),降水从沿海向内陆逐渐减少,高值区主要分布在中国东南地区及云南南部,年降水量最大达2186.0 mm,而川西高原年降水量最低到416 mm。四川盆地、重庆、贵州是典型的总云量和中云量的高值区,因为受到降水效率影响,年降水量相对东南地区偏少。由于云和降水反馈机制复杂,降水的发生、持续、强度受到多种因素影响,接下来分析不同高度云量和降水强度、降水次数的关系。值得注意的是,在四川攀西高原的强降水中心,与降水实况有差异,这与CMORPH-AWS融合降水数据对复杂地形下降水反演精度有限有关,说明需要对融合降水数据中复杂地形下的降水的反演进行改进。
图3
图3
1998—2009年中国南方地区年平均降水量空间分布(单位:mm)
Fig.3
Spatial distribution of annual mean precipitation during 1998-2009 over southern China (Unit:mm)
3 中国南方云量的季节变化
图4为1998—2009年中国南方地区四季总云量空间分布。可以看出,总云量有明显的季节变化,夏季多冬季少。总云量高值中心常年维持在四川盆地、贵州、重庆交接处上空,随季节变化位移。春季,大部分地区总云量值在60%以上,少云中心位于云南上空,极小值为49%,中国东南部受西太平洋副热带高压和南下冷空气的影响,锋面和气旋频繁,华南地区水汽充沛,与冬季相比,总云量明显增多。夏季总云量增加,高值中心向西南移动,形成了云贵高原到四川的多云带,极大值达91%,云量分布的变化和中国夏季风的推进有关,季风带来洋面上的暖湿气流,有利于云形成和维持。秋季总云量减少,显示出向冬季过渡特征。冬季受到干冷冬季风的影响,中国南方地区总云量降到最低。
图4
图4
1998—2009年中国南方地区四季总云量空间分布(单位:%)
(a)春季,(b)夏季,(c)秋季,(d)冬季
Fig.4
The spatial distribution of the total cloud cover in four seasons during 1998-2009 over southern China (Unit:%)
(a) spring, (b) summer, (c) autumn, (d) winter
低云量季节变化不明显(图略)且整体表现出由沿海地区向内陆地区逐渐减少的分布特征,东南沿海地区低云量为16%~27%。
图5
图5
1998—2009年中国南方地区四季中云量空间分布(单位:%)
(a)春季,(b)夏季,(c)秋季,(d)冬季
Fig.5
The spatial distribution of the medium cloud cover in four seasons during 1998-2009 over southern China (Unit:%)
(a) spring, (b) summer, (c) autumn, (d) winter
图6
图6
1998—2009年中国南方地区四季高云量空间分布(单位:%)
(a)春季,(b)夏季,(c)秋季,(d)冬季
Fig.6
The spatial distribution of the high cloud cover in four seasons during 1998-2009 over southern China(Unit:%)
(a) spring, (b) summer, (c) autumn, (d) winter
云量受到地形和季风影响,在不同季节云量变化较大,为了定量分析不同高度云量的季节变化,将南方地区不同高度的云量做区域平均,分析不同高度云量的月际变化(图7)。中云量和低云量月际变化类似,在7月降到谷值分别为23%和5%,3月达到峰值分别为30%和11%。总云量和高云量月际变化类似,6月和7月达到峰值分别为76%和38%,12月达到谷值分别为48%和10%,变化趋势和中、低云量刚好相反。夏季,中、低云量减少,高、总云量增加;冬季,高、总云量减少,中、低云量增加。
图7
图7
1998—2009年中国南方地区不同高度云量的月际变化
Fig.7
Monthly variation of cloud cover at different heights over southern China during 1998-2009
4 中国南方云量和降水的关系
图8
图8
1998—2009年中国南方地区云量与降水强度(a、b、c、d),月降水次数(e、f、g、h)的散点图
(a、e)总云量,(b、f)低云量,(c、g)中云量,(d、h)高云量
Fig.8
The scatter plots between precipitation intensity (a,b,c,d) , monthly precipitation frequency (e,f,g,h) and cloud cover over southern China during 1998-2009
(a,e) total cloud cover, (b,f) low cloud cover, (c,g) medium cloud cover, (d,h) high cloud cover
总云量、高云量与月降水次数为显著负相关,相关系数分别为-0.12和-0.07,而中云量和月降水次数为显著正相关,相关系数为0.14,均通过了α=0.05的显著性检验。这说明随着总云量和高云量的增多,降水强度增强但月降水次数减少,特别是随着高云量的增加,降水强度增强明显,月降水次数减少;随着中云量增多,月降水次数增多但对降水强度影响不大。这是因为降水云系是由高云和中低云共同组成,高层云中的冰粒子或雨滴下降到中低层的云中时,云水转化为降水的效率提高,符合自然“播种-供给”的降水机制,有利于雨水的形成。由此可见,在南方地区降水强度和月降水次数与不同高度的云量关系密切。
图9
图9
1998—2009年中国南方地区不同类型云的云量和降水强度的散点图
(a)积云,(b)层积云,(c)层云,(d)高积云,(e)高层云,(f)雨层云,(g)卷云,(h)卷层云,(i)深对流云
Fig.9
The scatter plots between precipitation intensity and cloud cover with different type over southern China during 1998-2009
(a)cumulus, (b) stratocumulus, (c) stratus, (d) altocumulus, (e) altostratus, (f) nimbostratus, (g) cirrus, (h) cirrostratus, (i) deep convective
从图10可以看出,积云、层积云、层云、高积云、高层云、深对流云云量与月降水次数为显著负相关,相关系数分别为-0.12、-0.19、-0.09、-0.13、 -0.12、-0.06,通过了α=0.05的显著性检验;雨层云、卷云、卷层云云量和月降水次数相关不显著。说明随着层积云、层云云量的增加,降水强度和月降水次数减小;随着高积云、高层云、深对流云云量的增加,降水强度增强但月降水次数减少;随着卷云、卷层云云量的增加,降水强度增强但对月降水次数影响不大;随着积云云量的增强,月降水次数增加但对降水强度影响不大。寇雄伟等[37]研究指出在夏季深对流云和卷层云云量与降水量呈显著正相关,深对流云和卷层云云量大值区伴随雨带移动。这与本文结果相似。李跃清等[17]基于ISCCP云资料研究发现西南大部分地区的高层云云量与雨量、雨日关系密切,贵州、重庆地区夏季的雨层云云量与雨日、雨量也有较好的关系,表明西南地区发生降水时,一般是雨层云和高层云相伴存在,和本文结论基本一致。由此可见,在南方地区高积云、高层云、深对流云云量增加会对降水强度产生正影响,而对月降水次数产生负影响。
图10
图10
1998—2009年中国南方地区不同类型云的云量和月降水次数的散点图
(a)积云,(b)层积云,(c)层云,(d)高积云,(e)高层云,(f)雨层云,(g)卷云,(h)卷层云,(i)深对流云
Fig.10
The scatter plots between monthly precipitation frequency and cloud cover with different type over southern China during 1998-2009
(a)cumulus, (b) stratocumulus, (c) stratus, (d) altocumulus, (e) altostratus, (f) nimbostratus, (g) cirrus, (h) cirrostratus, (i) deep convective
5 结论
本文利用1998年1月1日至2009年10月31日ISCCP云资料集,详细分析了中国南方地区总云量和不同高度云量的空间分布和季节变化,并结合CMORPH-AWS融合降水数据初步分析不同高度和不同类型云的云量与降水的关系,得到如下主要结论:
(1)中国南方地区总云量年均为52%~78%,高值中心常年维持在四川盆地、重庆、贵州交接处上空,随季节变化位移。低云量年均为0~28%,表现为从沿海地区向内陆地区减少的空间分布特征。中云量年均为15%~48%,高值常年维持在四川盆地、重庆、贵州交接处上空。高云量年均为15%~35%,表现为从沿海地区向川西高原逐渐增多的空间分布特征,高值中心常年位于青藏高原上空。在季节变化上,高云量呈夏季多冬季少,云量季节性变化大但高值中心基本稳定在青藏高原;中云量和低云量年内变化类似,冬季多、夏季少,季节性变化小;总云量呈夏季多、冬季少,空间分布变化和东亚夏季风推进有密切联系。
(2)中国南方地区降水强度、月降水次数和云量关系密切。降水强度与总云量、高云量呈显著正相关,与低云量呈显著负相关。月降水次数与总云量、高云量呈显著负相关,与中云量呈显著正相关。随着总云量和高云量的增多,降水强度增强但月降水次数减少;随着中云量增多,月降水次数增加但对降水强度影响较小。
(3)降水强度与高积云、高层云、卷云、卷层云、深对流云云量呈显著正相关,与层积云、层云云量呈显著负相关;月降水次数与积云、层积云、层云、高积云、高层云、深对流云云量呈显著负相关。随着层积云、层云云量的增加,降水强度和月降水次数减小;随着高积云、高层云、深对流云云量的增加,降水强度增加、月降水次数减小;随着卷云、卷层云云量的增加,降水强度增加、月降水次数变化不大;随着积云云量的增加月降水次数增加、降水强度变化不大。
云和降水的发生、发展都受到大气环流和云内的微物理过程等相互影响,由于云的生成、发展、消亡与降水之间的反馈机制复杂,文中云和降水之间的关系仅为基于两种遥感数据集的研究成果,没有考虑卫星云参数资料和遥感降水资料反演算法所带来的误差,并且降水类型、降水持续时间与云之间的关系还有待今后积累更多观测特别是飞机观测资料进行研究。同时,由于卫星和地面对云的观测方式不同,卫星探测到的低云量是没有被高、中云遮挡的云量,对低云的探测相对较低,因此与低云相关的结论还需结合更多资料作进一步考证。
参考文献
The energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models
[J].
Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range
[J].
ISCCP cloud data products
[J].
Comparison of ISCCP and other cloud amounts
[J].
Advances in understanding clouds from ISCCP
[J].
ISCCP cloud properties associated with standard cloud types identified in individual surface observations
[J].
Cloud type climatology over the Tibetan Plateau: a comparison of ISCCP and MODIS/TERRA measurements with surface observations
[J].
Relationship between middle stratiform clouds and large scale circulation over eastern China
[J].
Near-global observations of low clouds
[J].
/
〈 |
|
〉 |
