Journal of Arid Meteorology ›› 2023, Vol. 41 ›› Issue (4): 519-530.DOI: 10.11755/j.issn.1006-7639(2023)-04-0519
• Reviews • Previous Articles Next Articles
ZHANG Liang1(), ZHANG Qiang1(
), WANG Runyuan1, YUE Ping1, WANG Sheng1, ZENG Jian2, YANG Zesu2, LI Hongyu3, QIAO Liang4, WANG Wenyu5, ZHANG Hongli6, YANG Siqi1, ZHAO Funian1
Received:
2023-07-10
Revised:
2023-07-25
Online:
2023-08-31
Published:
2023-08-29
张良1(), 张强1(
), 王润元1, 岳平1, 王胜1, 曾剑2, 杨泽粟2, 李宏宇3, 乔梁4, 王文玉5, 张红丽6, 杨司琪1, 赵福年1
通讯作者:
张强(1965—),男,研究员,博士生导师,主要从事陆-气相互作用、边界层与干旱研究。E-mail:zhangqiang@cma.gov.cn。
作者简介:
张良(1980—),男,副研究员,主要从事陆-气相互作用与干旱研究。E-mail:lzhangmet@163.com。
基金资助:
CLC Number:
ZHANG Liang, ZHANG Qiang, WANG Runyuan, YUE Ping, WANG Sheng, ZENG Jian, YANG Zesu, LI Hongyu, QIAO Liang, WANG Wenyu, ZHANG Hongli, YANG Siqi, ZHAO Funian. New progresses in the study of land-atmosphere interaction in summer monsoon transition zone in China[J]. Journal of Arid Meteorology, 2023, 41(4): 519-530.
张良, 张强, 王润元, 岳平, 王胜, 曾剑, 杨泽粟, 李宏宇, 乔梁, 王文玉, 张红丽, 杨司琪, 赵福年. 我国夏季风过渡区陆-气相互作用研究的新进展[J]. 干旱气象, 2023, 41(4): 519-530.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ghqx.org.cn/EN/10.11755/j.issn.1006-7639(2023)-04-0519
数据类型 | 名称 | 机构名称 | 空间分辨率 | 时间分辨率 | 时间长度 |
---|---|---|---|---|---|
再分析资料 | NCEP/DOE | NCEP/DOE | T62 (200 km) | 6 h | 1979年1月至今 |
JRA-25 | JMA | T106 (110 km) | 3 h | 1979年1月至2014年2月 | |
ERA-Int | ECMWF | 1.5°×1.5° | 6 h | 1979年1月至今 | |
MERRA | NASA | 0.5°×0.67° | 1 h | 1979年1月至今 | |
离线陆面模式数据集 陆面观测 | GLDAS2-NOAH | NASA | 1°×1° | 3 h | 1979年1月至2010年12月 |
中国北方陆面过程观测 | 中国科学院大气物理研究所/地理科学与资源研究所 | 16个站点 | 30 min | 2003年1月至2009年9月 |
Tab.1 Information of Dataset (Liet al., 2020)
数据类型 | 名称 | 机构名称 | 空间分辨率 | 时间分辨率 | 时间长度 |
---|---|---|---|---|---|
再分析资料 | NCEP/DOE | NCEP/DOE | T62 (200 km) | 6 h | 1979年1月至今 |
JRA-25 | JMA | T106 (110 km) | 3 h | 1979年1月至2014年2月 | |
ERA-Int | ECMWF | 1.5°×1.5° | 6 h | 1979年1月至今 | |
MERRA | NASA | 0.5°×0.67° | 1 h | 1979年1月至今 | |
离线陆面模式数据集 陆面观测 | GLDAS2-NOAH | NASA | 1°×1° | 3 h | 1979年1月至2010年12月 |
中国北方陆面过程观测 | 中国科学院大气物理研究所/地理科学与资源研究所 | 16个站点 | 30 min | 2003年1月至2009年9月 |
Fig.3 Inter-annual variations of land-surface heat fluxes and duration index of summer monsoon (a, b) and relation between land-surface heat fluxes and duration index of summer monsoon in west (a, c) and east (b, d) regions of the summer monsoon transition zone (Li et al., 2021)
Fig.4 Five major time scales variations of summer monsoon duration index and summer mean sensible heat flux from 1961 to 2013 decomposed by the ensemble empirical mode decomposition in west region of the summer monsoon transition zone(Li et al., 2021) (a) about 3 a time scale, (b) 5-7 a time scale, (c) inter-decadal time scale, (d) multi-decadal time scale, (e) the adaptive nonlinear trend
Fig.5 Comparison of change trend of pan evaporation in the summer monsoon transition zone in China with other parts of the world (a) (Zhang et al., 2016a) and the contribution rate of its main influence factors (b) (Yang et al., 2019)
Fig.6 Variation trend of annual mean evapotranspiration (a) and normalized evapotranspiration by annual precipitation (b) with temperature increase under different precipitation-based climate types (Zhang et al., 2019) (Pxxx denotes precipitation-based climate type)
Fig.9 Comparison of atmospheric boundary layer height on sunny summer days in typical non-monsoon zone, summer monsoon transition zone and monsoon zone (Qiao et al., 2019)
Fig.10 Comparison of surface net radiation, maximum of daily difference between ground and air temperature and convective boundary layer thickness on sunny summer days in typical non-monsoon zone, summer monsoon transition zone and monsoon zone (Qiao et al., 2019)
Fig.11 The temporal evolution of the northern edge index of summer monsoon in three climatic sub-regions of the summer monsoon transition zone (Zhang et al., 2016)
相关系数 | 气候倾向率/[(°)·(10a)-1] | 年平均夏季风北边缘指数 | |||
---|---|---|---|---|---|
A区 | B区 | C区 | |||
A区 | 1 | 0.61** | 0.06 | -0.22* | 34.87°N |
B区 | 1 | 0.21 | -0.18* | 41.98°N | |
C区 | 1 | -0.01 | 44.64°N |
Tab.2 Correlation coefficient and climate tendency rate of the northern edge index of summer monsoon in each sub-region (Zhang et al., 2016)
相关系数 | 气候倾向率/[(°)·(10a)-1] | 年平均夏季风北边缘指数 | |||
---|---|---|---|---|---|
A区 | B区 | C区 | |||
A区 | 1 | 0.61** | 0.06 | -0.22* | 34.87°N |
B区 | 1 | 0.21 | -0.18* | 41.98°N | |
C区 | 1 | -0.01 | 44.64°N |
Fig.12 The relationship between spring wheat yield and soil moisture before sowing considering (a) and no considering (b) the atmospheric dry and wet conditions and classification of atmospheric dry and wet conditions during the growth period (Zhao et al., 2022)
Fig.13 Environmental factors in the formation of spring wheat yield (Zhao et al., 2022) (***, ** and * passing the significance tests at α=0.001, α=0.01, α=0.05, respectively)
[1] | 丁一汇, 孙颖, 刘芸芸, 等, 2013. 亚洲夏季风的年际和年代际变化及其未来预测[J]. 大气科学, 37(2): 253-280. |
[2] | 符淙斌, 安芷生, 郭维栋, 2005. 我国生存环境演变和北方干旱化趋势预测研究(Ⅱ): 研究成果的创新性及项目实施效果[J]. 地球科学进展, 20(11): 1 168-1 175. |
[3] | 胡豪然, 钱维宏, 2007. 东亚夏季风北边缘的确认[J]. 自然科学进展, 17(1): 57-65. |
[4] | 黄荣辉, 周德刚, 陈文, 等, 2013. 关于中国西北干旱区陆-气相互作用及其对气候影响研究的最近进展[J]. 大气科学, 37(2): 189-210. |
[5] | 李宏宇, 张强, 王春玲, 等, 2020. 基于多源陆面通量数据相融合的新资料及其在中国夏季风影响过渡区的应用[J]. 大气科学, 44(6): 1 224-1 242. |
[6] | 李振山, 陈广庭, 1997. 粗糙度研究的现状及展望[J]. 中国沙漠, 17(1):99-102. |
[7] | 乔梁, 张强, 岳平, 等, 2019. 由非季风区向季风区过渡过程中大气边界层结构的变化分析[J]. 大气科学, 43(2): 251-265. |
[8] | 汤绪, 钱维宏, 梁萍, 2006. 东亚夏季风边缘带的气候特征[J]. 高原气象, 25(3): 375-381. |
[9] | 王蓉, 黄倩, 张强, 2020. 覆盖逆温强度对干旱区超厚对流边界层影响的大涡模拟[J]. 干旱区研究, 37(4): 925-935. |
[10] | 杨司琪, 张强, 奚小霞, 等, 2018. 夏季风影响过渡区与非夏季风影响过渡区蒸发皿蒸发趋势的对比分析[J]. 高原气象, 37(4): 1 017-1 024. |
[11] | 杨司琪, 张强, 奚小霞, 等, 2019. 中国夏季风影响过渡区与其他地区蒸发皿蒸发量趋势相反的原因[J]. 大气科学, 43(6): 1 441-1 450. |
[12] | 姚彤, 张强, 2014. 我国北方不同类型下垫面地表反照率特征[J]. 物理学报, 63(8): 460-468. |
[13] | 曾剑, 张强, 王春玲, 2016. 东亚夏季风边缘摆动区陆面能量时空分布规律及其与气候环境的关系[J]. 气象学报, 74(6): 876-888. |
[14] | 张强, 曾剑, 姚桐, 2012. 植被下垫面近地层大气动力状态与动力学粗糙度长度的相互作用及其参数化关系[J]. 科学通报, 57(8): 647-655. |
[15] | 张强, 李宏宇, 张立阳, 等, 2013. 陇中黄土高原自然植被下垫面陆面过程及其参数对降水波动的气候响应[J]. 物理学报, 62(1): 522-532. |
[16] | 张强, 岳平, 张良, 等, 2019. 夏季风过渡区的陆气相互作用: 述评与展望[J]. 气象学报, 77(4): 758-773. |
[17] |
AMINZADEH M, OR D, 2017. The complementary relationship between actual and potential evaporation for spatially heterogeneous surfaces[J]. Water Resources Research, 53(1): 580-601.
DOI URL |
[18] |
HUANG J P, YU H P, DAI A G, et al, 2017. Drylands face potential threat under 2 ℃ global warming target[J]. Nature Climate Change, 7: 417-422.
DOI URL |
[19] |
HUANG J P, YU H P, GUAN X D, et al, 2016. Accelerated dryland expansion under climate change[J]. Nature Climate Change, 6(1): 166-171.
DOI |
[20] |
KANAMITSU M, EBISUZAKI W, WOOLLEN J, et al, 2002. NCEP-DOEAMIP-II reanalysis (R-2)[J]. Bulletin of the American Meteorological Society, 83(11): 1 631-1 643.
DOI URL |
[21] |
KONDO J, YAMAZAWA H, 1986. Aerodynamic roughness over an inhomogeneous ground surface[J]. Boundary-Layer Meteorology, 35(1): 331-348.
DOI URL |
[22] | LI H Y, ZHANG Q, YUE P, et al, 2021. Temporal duration of the East Asian summer monsoon substantially affects surface energy exchange over the summer monsoon transition zone of China[J]. Journal of Climate, 34(11): 4 643-4 660. |
[23] | ONOGI K, TSUTSUI J, KOIDE H, et al, 2007. The JRA-25 reanalysis[J]. Journal of the Meteorological Society of Japan, 85(3): 369-432. |
[24] |
QI Y, ZHANG Q, HU S J, et al, 2022. Effects of high temperature and drought stresses on growth and yield of summer maize during grain filling in North China[J]. Agriculture, 12(11), 1948. DOI: 10.3390/agriculture12111948.
DOI |
[25] |
ROBERTS J B, ROBERTSON F R, CLAYSON C A, et al, 2012. Characterization of turbulent latent and sensible heat flux exchange between the atmosphere and ocean in MERRA[J]. Journal of Climate, 25(3): 821-838.
DOI URL |
[26] |
ROCHA H R, GOULDEN M L, MILLER S D, et al, 2004. Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia[J]. Ecological Applications, 14(sp4): 22-32.
DOI URL |
[27] |
RODELL M, HOUSER P R, JAMBOR U, et al, 2004. The global land data assimilation system[J]. Bulletin of the American Meteorological Society, 85(3): 381-394.
DOI URL |
[28] |
RODERICK M L, FARQUHAR G D, 2002. The cause of decreased pan evaporation over the past 50 years[J]. Science, 298(5597): 1 410-1 411.
DOI URL |
[29] |
SENEVIRATNE S I, LÜTHI D, LITSCHI M, et al, 2006. Land-atmosphere coupling and climate change in Europe[J]. Nature, 443: 205-209.
DOI |
[30] | SIMMONS A, UPPALA S S, DEE D, et al, 2007. ERA-Interim: new ECMWF reanalysis products from 1989 onwards[J]. ECMWF Newsletter, 110(1): 25-35. |
[31] | STULL R, 1988. An introduction to boundary layer meteorology[M]. Dordrecht: Springer: 115-149. |
[32] |
TWINE T E, KUSTAS W P, NORMAN J M, et al, 2000. Correcting eddy-covariance flux underestimates over a grassland[J]. Agricultural and Forest Meteorology, 103(3): 279-300.
DOI URL |
[33] |
WANG R Y, ZHAO H, QI Y, et al, 2023. Onset and severity thresholds of drought impacts on wheat[J]. Agricultural Water Management, 281, 108259. DOI: 10.1016/j.agwat.2023.108259.
DOI |
[34] |
YUE P, ZHANG Q, REN X Y, et al, 2022. Environmental and biophysical effects of evapotranspiration in semiarid grassland and maize cropland ecosystems over the summer monsoon transition zone of China[J]. Agricultural Water Management, 264, 107462. DOI: 10.1016/j.agwat.2022.107462.
DOI |
[35] |
ZHANG H L, ZHANG Q, YUE P, et al, 2016. Aridity over a semiarid zone in northern China and responses to the East Asian summer monsoon[J]. Journal of Geophysical Research: Atmospheres, 121(23): 13 901-13 918.
DOI URL |
[36] |
ZHANG L, ZHANG Q, ZHANG H L, et al, 2022. Environmental factors driving evapotranspiration over a grassland in a transitional climate zone in China[J]. Meteorological Applications, 29(3), e2066. DOI: 10.1002/met.2066.
DOI |
[37] |
ZHANG Q, YAO T, YUE P, et al, 2013. The influences of thermodynamic characteristics on aerodynamic roughness length over land surface[J]. Acta Meteorologica Sinica, 27(2): 249-262.
DOI URL |
[38] |
ZHANG Q, WANG W Y, WANG S, et al, 2016a. Increasing trend of pan evaporation over the semiarid loess plateau under a warming climate[J]. Journal of Applied Meteorology and Climatology, 55(9): 2 007-2 020.
DOI URL |
[39] |
ZHANG Q, YAO T, YUE P, 2016b. Development and test of a multi-factorial parameterization scheme of land surface aerodynamic roughness length for flat land surfaces with short vegetation[J]. Science China: Earth Sciences, 59(2): 281-295.
DOI URL |
[40] |
ZHANG Q, YANG Z S, HAO X C, et al, 2019. Conversion features of evapotranspiration responding to climate warming in transitional climate regions in Northern China[J]. Climate Dynamics, 52(7): 3 891-3 903.
DOI |
[41] |
ZHANG Q, ZENG J, YUE P, et al, 2020. On the land-atmosphere interaction in the summer monsoon transition zone in East Asia[J]. Theoretical and Applied Climatology, 141(3): 1 165-1 180.
DOI |
[42] |
ZHAO F N, LEI J, WANG R Y, et al, 2022. Environmental determination of spring wheat yield in a climatic transition zone under global warming[J]. International Journal of Biometeorology, 66(3): 481-491.
DOI |
[43] |
ZUO J Q, HUANG J P, WANG J M, et al, 2009. Surface turbulent flux measurements over the Loess Plateau for a semi-arid climate change study[J]. Advances in Atmospheric Sciences, 26(4): 679-691.
DOI URL |
[1] | WANG Sheng, TIAN Hong, WU Rong, DING Xiaojun, XIE Wusan, DAI Juan, TANG Weian. Comprehensive assessment of regional high temperature and drought processes in Anhui Province in 2022 [J]. Journal of Arid Meteorology, 2022, 40(5): 771-779. |
[2] | LI Liang, YANG Zesu, HE Hang. Evapotranspiration-precipitation coupling strength response to hydrothermal factors over northern China [J]. Journal of Arid Meteorology, 2022, 40(5): 791-803. |
[3] | DU Haolin, WANG Sheng, QIAO Liang, SUN Xuying. Analysis of instrument accuracy and observation error of land surface process observation experiment in semi-arid area [J]. Journal of Arid Meteorology, 2022, 40(3): 364-374. |
[4] | REN Yulong, ZHANG Tiejun, LIU Yuanpu, WU Jing. Numerical Simulation of Influence of Underlying Surface Heterogeneity on a Rainstorm Process in Summer Monsoon Transition Zone of China [J]. Journal of Arid Meteorology, 2020, 38(5): 755-763. |
[5] | HUANG Shan, YANG Yang, WANG Hanjia, YANG Qidong. Spatio-temporal Characteristics of Sensible and Latent Heat Flux in Southwest China [J]. Journal of Arid Meteorology, 2020, 38(4): 601-611. |
[6] | LV Jing, LI Yueqing, ZOU Binjun, JIANG Nan, LI Xuefeng, WANG Huibing. Variation Characteristics of Rainfall with Different Orders of Magnitude in Emei Mountain and Its Surrounding Areas During 1959-2016 [J]. Journal of Arid Meteorology, 2018, 36(2): 243-255. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018 Journal of Arid Meteorology
Tel: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com