Journal of Arid Meteorology ›› 2022, Vol. 40 ›› Issue (3): 469-484.DOI: 10.11755/j.issn.1006-7639(2022)-03-0469
• Articles • Previous Articles Next Articles
CAO Qian1(), LEI Guilian2(
), YI Yanhong3, ZHANG Yizhi1, LIU Liangyu1, PENG Wangminzi1
Received:
2021-12-24
Revised:
2022-05-10
Online:
2022-06-30
Published:
2022-06-28
Contact:
LEI Guilian
曹倩1(), 雷桂莲2(
), 易艳红3, 章毅之1, 刘良玉1, 彭王敏子1
通讯作者:
雷桂莲
作者简介:
曹倩(1992—),女,硕士,江西上饶人,工程师,主要从事数值模拟及资料同化工作. E-mail: 1305281831@qq.com。
基金资助:
CLC Number:
CAO Qian, LEI Guilian, YI Yanhong, ZHANG Yizhi, LIU Liangyu, PENG Wangminzi. Impact of different radar data assimilation on a rare strong squall line simulation[J]. Journal of Arid Meteorology, 2022, 40(3): 469-484.
曹倩, 雷桂莲, 易艳红, 章毅之, 刘良玉, 彭王敏子. 不同雷达观测资料同化对一次罕见飑线天气模拟的影响[J]. 干旱气象, 2022, 40(3): 469-484.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ghqx.org.cn/EN/10.11755/j.issn.1006-7639(2022)-03-0469
试验名称 | 试验简介 |
---|---|
NODA | 不同化雷达资料,将内外层积分得到的12:00预报结果直接当作初始场,向后积分5 h |
DARF | 以内外层积分得到的12:00预报场作为同化初始场,在12:00—13:00每隔6 min同化雷达反射率资料, 得到13:00分析场后,向后积分4 h |
DAVE | 同DARF试验,12:00—13:00每隔6 min同化雷达径向风资料 |
DARV | 同DARF试验,12:00—13:00每隔6 min联合同化雷达反射率和径向风资料 |
Tab.1 Experimental scheme
试验名称 | 试验简介 |
---|---|
NODA | 不同化雷达资料,将内外层积分得到的12:00预报结果直接当作初始场,向后积分5 h |
DARF | 以内外层积分得到的12:00预报场作为同化初始场,在12:00—13:00每隔6 min同化雷达反射率资料, 得到13:00分析场后,向后积分4 h |
DAVE | 同DARF试验,12:00—13:00每隔6 min同化雷达径向风资料 |
DARV | 同DARF试验,12:00—13:00每隔6 min联合同化雷达反射率和径向风资料 |
Fig.2 The distribution of gale greater than grade 8 observed and forecasted by different experiments in Jiangxi from 13:00 BST to 17:00 BST March 4, 2018(Unit:m·s-1) (a) observation, (b) NODA, (c) DARF, (d) DAVE, (e) DARV
Fig.4 The distribution of 3-hour accumulated rainfall observed and forecasted by different experiments from 13:00 BST to 16:00 BST March 4, 2018(Unit: mm)(a) observation, (b) NODA, (c) DARF, (d) DAVE, (e) DARV
Fig.5 The radar composite reflectivity (Unit: dBZ) of observation and initial analysis fields of different experiments at 13:00 BST March 4, 2018 (The solid blue lines are section lines perpendicular to the squall line) (a) observation, (b) NODA, (c) DARF, (d) DAVE, (e) DARV
Fig.6 Vertical cross sections of radar composite reflectivity (color shaded, Unit:dBZ) and graupel mixing ratio (black contours, Unit:g·kg-1) of observation and initial analysis fields of different experiments along the blue line in Fig.5 at 13:00 BST March 4, 2018 (The black dotted line is 0 ℃ isotherm. the same as bellow) (a) observation, (b) NODA, (c) DARF, (d) DAVE, (e) DARV
Fig.7 Vertical cross sections of rain water (black contours) and snow (color shaded) mixing ratio (Unit:g·kg-1) of initial analysis fields of different experiments along the blue line in Fig.5 at 13:00 BST March 4, 2018 (a)NODA,(b)DARF,(c)DAVE,(d)DARV
Fig.8 The radial velocity (Unit:m·s-1) on the elevation of 0.5º from Yichun Doppler radar and its simulations in initial analysis fields of different experiments at 13:00 BST March 4, 2018 (The black star is location of the radar station) (a) observation, (b) NODA, (c) DARF, (d) DAVE, (e) DARV
Fig.9 Vertical cross sections of pseudo-equivalent potential temperature (contours) and perturbation potential temperature(color shaded) along the blue line in Fig.5 in initial analysis fields of different experiments at 13:00 BST March 4, 2018 (Unit: K) (a)NODA,(b)DARF,(c)DAVE,(d)DARV
Fig.10 Observed and simulated radar reflectivity factor (color shaded, Unit:dBZ) and wind fields (vectors, Unit:m·s-1)simulated by NODA, wind field increment (vectors, Unit:m·s-1) simulated by DARF and DAVE and DARV compared with NODA at 15:00 BST 4 March, 2018
Fig.11 The hourly evolution of 0-3 km vertical wind shear vector (arrows) and vertical wind shear speed (color shaded, Unit: m·s-1) simulated by different experiments on March 4, 2018
[1] | 竹利, 卢德全, 廖文超, 等. 连续两次飑线大风成因对比分析[J]. 干旱气象, 2021, 39(5): 796-806. |
[2] |
PRZYBYLINSKI R W. The bow echo: observations, numerical simulations, and severe weather detection methods[J]. Weather and Forecasting, 1995, 10(2):203-218.
DOI URL |
[3] |
ATKINS N T, LANRENT M S. Bow echo mesovortices. Part 1: processes that influence their damaging potential[J]. Monthly Weather Review, 2009a, 137(5):1497-1513.
DOI URL |
[4] |
ATKINS N T, LANRENT M S. Bow echo mesovortices. Part II: their genesis[J]. Monthly Weather Review, 2009b, 137(5):1514-1532.
DOI URL |
[5] | 罗建英, 廖胜石, 梁岱云, 等. 2005年3月22日华南飑线的综合分析[J]. 气象, 2006, 32(10):70-75. |
[6] | 廖晓农, 俞小鼎, 王迎春. 北京地区一次罕见的雷暴大风过程特征分析[J]. 高原气象, 2008, 27(6): 1350-1362. |
[7] | 刘香娥, 郭学良. 灾害性大风发生机理与飑线结构特征的个例分析模拟研究[J]. 大气科学, 2012, 36(6): 1150-1164. |
[8] |
吴海英, 陈海山, 蒋义芳, 等. “090603”强飑线过程动力结构特征的观测与模拟分析[J]. 高原气象, 2013, 32(4):1084-1094.
DOI |
[9] | 苗爱梅, 董春卿, 王洪霞, 等. “0613”华北飑线过程的多普勒雷达回波特征[J]. 干旱气象, 2017, 35(6):1015-1026. |
[10] | 闵锦忠, 王修莹, 沈菲菲, 等. 多普勒雷达资料同化对江苏一次飑线过程的数值模拟[J]. 气象科学, 2015, 35(3):248-257. |
[11] |
TONG M, XUE M. Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments[J]. Monthly Weather Review, 2005, 133(7):1789-1807.
DOI URL |
[12] | XIAO Q, KUO Y H, SUN J, et al. Assimilation of Doppler radar observations with a regional 3DVAR system:impact of Doppler velocities on forecasts of a heavy rainfall case[J]. Journal of Climate and Applied Meteorology, 2005, 44(3):768-788. |
[13] |
XIAO Q, SUN J. Multiple-radar data assimilation and short-range quantitative precipitation forecasting of a squall line observed during IHOP_2002[J]. Monthly Weather Review, 2007a, 135(10):3381-3404.
DOI URL |
[14] | XIAO Q, KUO Y H, SUN J, et al. An approach of radar reflectivity data assimilation and its assessment with the inland QPF of Typhoon Rusa (2002) at landfall[J]. Journal of Climate and Applied Meteorology, 2007b, 46(1): 14-22. |
[15] | 王洪, 王东海, 万齐林. 多普勒雷达资料同化在“7·21”北京特大暴雨个例中的应用[J]. 气象学报, 2015, 73(4):679-696. |
[16] | 沈菲菲, 束艾青, 许冬梅, 等. 多普勒雷达资料同化对北京“7·21”大暴雨过程模拟的影响[J]. 沙漠与绿洲气象, 2020, 14(2):50-60. |
[17] | 马晓华, 屈丽玮, 张雅斌. 多普勒雷达资料同化对暴雨预报的影响[J]. 陕西气象, 2016(6):1-8. |
[18] | 薛谌彬, 陈娴, 吴俞, 等. 雷达资料同化在局地强对流预报中的应用[J]. 大气科学, 2017, 4l(4):673-690. |
[19] | 范水勇, 王洪利, 陈敏, 等. 雷达反射率资料的三维变分同化研究[J]. 气象学报, 2013, 71(3):527-537. |
[20] |
蒋宗孝, 沈永生, 蒋永成, 等. 多普勒雷达资料同化在福建地区暴雨过程中的模拟试验[J]. 高原气象, 2019, 38(3):563-572.
DOI |
[21] | 沈艳秋, 黄兴友, 沈菲菲, 等. 基于雷达资料同化的飑线过程数值模拟试验研究[J]. 气象科学, 2021, 41(1):13-26. |
[22] | 陈锋, 董美莹, 冀春晓, 等. 雷达资料同化对2016年6月23日阜宁龙卷模拟的改进[J]. 气象学报, 2019, 77(3):405-426. |
[23] | 陈锋, 董美莹, 苏涛, 等. 雷达资料同化对一次浙江初春罕见飑线过程数值模拟的影响分析[J]. 气象, 2020, 46(4):462-477. |
[24] |
PARRISH D H, DERBER J C. The National Meteorological Center’s spectral statistical interpolation analysis system[J]. Monthly Weather Review, 1992, 120(8):1747-1763.
DOI URL |
[25] | WANG H L, SUN J Z. Indirect assimilation of radar reflectivity with WRF 3D-Var and its impact on prediction of four summertime convective events[J]. Journal of Climate and Applied Meteorology, 2013, 52(10):889-902. |
[26] |
SUN J, CROOK N A. Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoin. Part I: model development and simulated data experiments[J]. Journal of the Atmospheric Sciences, 1997, 54(12):1642-1661.
DOI URL |
[27] | WANG H L, SUN J Z, GUO Y R. Radar reflectivity assimilation with the Four-dimensional variational system of the weather research and forecast model[J]. Journal of Environmental Hydrology, 2011, 46(3):289-298. |
[28] | 盛杰, 郑永光, 沈新勇, 等. 2018年一次罕见早春飑线大风过程演变和机理分析[J]. 气象, 2019, 45(2): 141-154. |
[29] |
GAO J D, STENSRUD D J. Assimilation of reflectivity data in a convective-scale, cycled 3DVAR framework with hydrometeor classification[J]. Journal of the Atmospheric Sciences, 2012, 69(3):1054-1065.
DOI URL |
[30] | 张弛, 支树林, 许爱华. 一次罕见强飑线10级大风的雷达回波特征分析[J]. 暴雨灾害, 2019, 38(2): 135-143. |
[31] |
WEISMAN M L, KLEMP J B, ROTUUNO R. Structure and evolution of numerically simulated squall lines[J]. Journal of the Atmospheric Sciences, 1988, 45(14):1990-2013.
DOI URL |
[32] | 陈明轩, 王迎春. 低层垂直风切变和冷池相互作用影响华北地区一次飑线过程发展维持的数值模拟[J]. 气象学报, 2012, 70(3):371-386. |
[33] |
THORPE A J, MILLER M J, MONCRIEFF M W. Two-dimensional convection in non-constant shear:a model of mid-latitude squall lines[J]. Quarterly Journal of the Royal Meteorological Society, 1982, 108(458):739-762.
DOI URL |
[34] | 梁建宇, 孙建华. 2009年6月一次飑线过程灾害性大风的形成机制[J]. 大气科学, 2012, 36(2):316-336. |
[35] | 竹利, 陈朝平, 陈茂强,等. 川北飑线成熟阶段灾害性大风成因个例分析[J]. 暴雨灾害, 2018, 37(2):164-173. |
[1] | LI Qiang, MIAO Aimei, WANG Hongxia, ZHANG Limei. Statistical characteristics and conceptual models of thunderstorm gales in Shanxi Province [J]. Journal of Arid Meteorology, 2023, 41(3): 423-433. |
[2] | WU Rongsheng,LI Yunpeng,WU Ruifen,ZHENG Fengjie,SU Yue. Refined Climatic Suitability Division of Sunflower Following Spring Wheat Harvest in Inner Mongolia Based on CLDAS Data [J]. Journal of Arid Meteorology, 2021, 39(5): 807-815. |
[3] | MA Hongqing, ZHANG Jiangtao, LI Yan, XU Yiguo, DONG Jiangnan, WANG Yating. Environmental Field and Storm Features of a Destructive Thunderstorm Gale in Baoding of Hebei Province on 9 July 2017#br# [J]. Journal of Arid Meteorology, 2019, 37(4): 613-621. |
[4] | SUN Xia, FAN Guangzhou, ZHANG Yongli, LAI Xin. Temporal and Spatial Variation Characteristics of Soil Moisture at Different Layers of the Tibetan Plateau in Summer [J]. Journal of Arid Meteorology, 2019, 37(2): 252-261. |
[5] | LI Sirong, MIAO Aimei, WANG Hongxia. Cloud Image Characteristics and Maintaining Mechanism of a Squall Line in Autumn in Shanxi Province [J]. Journal of Arid Meteorology, 2019, 37(2): 312-321. |
[6] | WANG Xiaoli, ZHAO Guixiang, LI Fang. Analysing Effect of Variational Data Assimilation of Satellite Radiance on a Regional Heavy Rain in Shanxi Province [J]. Journal of Arid Meteorology, 2016, 34(3): 522-532. |
[7] | WANG Tian,ZHANG Shuwen,MAO Lu,MAO Fuping. A Simulation Experiment of Assimilating Microwave Brightness Observations at the Sensitive Channel to Land [J]. Journal of Arid Meteorology, 2014, 32(6): 909-915. |
[8] | ZHOU Heling,ZHANG Shaohui,YANG Yan. Climatic Characteristics of Thunderstorm Gale in Langfang of Hebei Province [J]. Journal of Arid Meteorology, 2014, 32(4): 588-592. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018 Journal of Arid Meteorology
Tel: 0931-2402270、0931-2402775 Email:ghqx@iamcma.cn、ghs_ghqx@sina.com