改进温度植被干旱指数(Temperature Vegetation Dryness Index,TVDI)并明确TVDI的农业干旱等级阈值,对提高TVDI指数监测农业干旱能力有重要意义。利用近19 a的MODIS(Moderate Resolution Imaging Spectro-radiometer,MODIS)遥感数据,基于单时次和多时次方法构建NDVI(Normalized Difference Vegetation Index,NDVI)-LST(Land Surface Temperature,LST)、EVI(Enhanced Vegetation Index,EVI)-LST、RVI(Ratio Vegetation Index,RVI)-LST、SAVI(Soil-Adjusted Vegetation Index,SAVI)-LST等几种特征空间,讨论TVDI计算方法,分析TVDI在甘肃省农业干旱监测中的适用性,并明确甘肃省夏季TVDI农业干旱分级标准。结果表明:(1)基于多时次方法构建的 SAVI-LST特征空间TVDI更适合甘肃省农业干旱监测,其对土壤相对湿度(Relative Soil Moisture,RSM)拟合的均方根误差(Root Mean Squared Error,RMSE)和平均绝对误差(Mean Absolute Error,MAE)比NDVI-LST特征空间TVDI对RSM拟合的RMSE和MAE下降1%~5%;(2)TVDI适用于夏季甘肃省半干旱区、半湿润区、湿润区等非干旱区浅层10、20 cm土壤深度的农业干旱监测,RMSE和MAE约15.6%和12.6%,拟合误差湿润区<半湿润区<半干旱区;(3)利用TVDI与RSM线性关系确定的TVDI农业干旱等级更有利于提高TVDI监测农业干旱的准确性。