期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 一次阵风锋及锋后极端大风的多种型号雷达观测特征分析
沈晓玲, 岑璐琳, 章超钦, 章唯薇
干旱气象    2025, 43 (1): 114-125.   DOI: 10.11755/j.issn.1006-7639-2025-01-0114
摘要68)   HTML3)    PDF(pc) (26846KB)(207)    收藏
利用多种型号雷达产品研究阵风锋演变特征及锋后极端大风产生的物理机制,对提高灾害性大风天气的预报预警能力有重要参考意义。本文利用常规高空和地面观测资料、欧洲中期天气预报中心第五代再分析资料(ERA5)、S波段双偏振雷达资料、X波段相控阵雷达资料等,分析2023年7月10日浙江绍兴一次阵风锋及锋后极端大风过程的雷达产品特征。结果表明:此次过程发生在高低空一致的西南气流背景下,高空处于副热带高压边缘,925 hPa处于西南风风速辐合区,大气热力不稳定条件和抬升条件较好。多个对流单体合并发展成多单体风暴后,在多单体风暴的出流边界形成了阵风锋。阵风锋经历了发展、断裂、减弱3个阶段,减弱阶段在其后侧触发了新生中尺度对流带,对流带后向传播特征明显。由阵风锋产生的极大风速出现在其减弱阶段,而过程极端大风出现在阵风锋触发的中尺度对流带东移北抬过程中。产生过程极端大风的对流单体内部涡旋结构仅存在于低层800 m高度,中高层以风向、风速辐合为主。当涡旋环流减弱消亡,反射率因子核心下降,风暴低层转为下沉气流时,产生6~7级阵风。之后当风暴后侧入流再次转为上升气流,并与高层下沉气流在中层辐合,同时水平方向上也伴随中层径向辐合,表明下沉气流增强,极端大风产生。由于动量下传作用贡献较小,因此此次极端大风主要由强下沉气流造成。
图表 | 参考文献 | 相关文章 | 多维度评价
2. 一次导致大风的暖区飑线后侧入流分析
桑明慧, 竹利, 沈晓玲, 张春艳, 左骏
干旱气象    2024, 42 (1): 84-94.   DOI: 10.11755/j.issn.1006-7639(2024)-01-0084
摘要260)   HTML7)    PDF(pc) (32177KB)(1637)    PDF(mobile) (32177KB)(15)    收藏

长生命史飑线极易造成大范围灾害性大风天气,研究其结构及其维持机制对灾害性大风天气预报有重要参考意义。利用浙江地面加密观测和雷达资料、美国国家环境预报中心/国家大气研究中心(National Centers for Environmental Prediction/National Center for Atmospheric Research)FNL(Final Operational Global Analysis)再分析资料及高分辨率模式模拟结果对2018年3月4日江南地区出现的一次造成大风的暖区飑线后侧入流进行分析,探讨飑线维持机制。结果表明,飑线发生在南支槽前高低空一致西南气流的暖区环境中,环境具有0~6 km中等到强垂直切变、高对流有效位能、中层和近地面有明显干区的特征;3 h负变压异常指数对此次过程具有一定的指示作用。飑线表现为“TS”结构,但层云区相对较窄;反射率因子核位于中层径向辐合下方下沉气流中。模式模拟结果表明,后侧入流及下沉气流在系统内部、后部分别强迫出逆时针和顺时针垂直环流,构成了飑线最主要结构特征;后侧入流紧靠系统后缘而位于对流层中层,促使上升气流由倾斜转为垂直;此后后侧入流远离系统,与低层出流合并持续抬升暖湿空气,后侧入流与前侧入流的协同作用有利于飑线维持更长时间。

图表 | 参考文献 | 相关文章 | 多维度评价
3. 浙江西部梅汛期两次相似落区暴雨过程对比分析
沈晓玲, 潘灵杰, 左骏, 桑明慧, 章丽娜
干旱气象    2022, 40 (2): 244-255.   DOI: 10.11755/j.issn.1006-7639(2022)-02-0244
摘要503)   HTML17)    PDF(pc) (10576KB)(2060)    收藏

利用浙江省常规气象观测资料、ERA5逐小时再分析资料、FY-4A卫星黑体亮度温度(TBB)资料,对2020年6月3日、6月30日两次暴雨过程进行对比分析。结果表明:(1)6月3日暴雨过程(简称“6·03”过程)发生在季风槽背景下,浙江省500 hPa处于槽前西南气流中,850 hPa为暖切变;而6月30日过程(简称“6.30”过程)发生在东北冷涡背景下,浙江省500 hPa处于冷暖气流交汇中,850 hPa为冷切变。两次过程降水落区相似,均集中在浙西地区,呈东西向带状分布,但“6·30”过程暴雨区范围更广,暴雨中心雨量和过程雨量更大,小时雨强更强,强降水持续时间更长。(2)两次过程均为对流不稳定性降水,但强降水落区发生在急流的不同位置。“6·03”过程为暖切变型暖区暴雨,对流云团“列车效应”显著,降水落区位于急流前方水汽通量强辐合区内,而“6·30”过程梅雨锋为西风辐合型锋生,对流云团为后向传播路径,降水落区位于急流轴附近的水汽通量强辐合区内。700 hPa水汽通量辐合大值区及强度与未来6 h强降水落区、强度相对应,这在梅汛期暴雨预报中有一定参考性。(3)降水类型不同,对应锋生作用不同,对1 h强降水有指示意义的锋区高度也不同,在梅汛期暴雨预报中要充分考虑不同降水类型与不同锋生作用在不同高度的对应性。

图表 | 参考文献 | 相关文章 | 多维度评价