干旱气象 ›› 2025, Vol. 43 ›› Issue (4): 646-653.DOI: 10.11755/j.issn.1006-7639-2025-04-0646

• 技术报告 • 上一篇    

基于Kolmogorov数据挖掘技术和SVM模型的FY-2G卫星反演产品冰雹识别方法研究

彭宇翔1(), 唐辟如2(), 周永水1, 李皓1, 刘涛3, 张超4, 喻乙耽1, 郭茜5   

  1. 1.贵州省气象台,贵州 贵阳 550081
    2.贵州省生态与农业气象中心,贵州 贵阳 550002
    3.贵州省山地气象科学研究所,贵州 贵阳 550002
    4.贵州省榕江县气象局,贵州 榕江 552707
    5.贵州省气象数据中心,贵州 贵阳 550002
  • 收稿日期:2024-05-14 修回日期:2024-06-26 出版日期:2025-08-31 发布日期:2025-09-08
  • 通讯作者: 唐辟如(1992—),女,湖南洞口人,主要从事人工影响天气科研业务工作。E-mail:350337780@qq.com
  • 作者简介:彭宇翔(1990—),男,贵州黄平人,高级工程师,硕士,主要从事人工影响天气科研业务工作与统计算法研究。E-mail:1070792379@qq.com
  • 基金资助:
    贵州省科技计划项目(课题)“基于风云卫星观测资料的冰雹天气识别研究”(黔科合基础-ZK[2021]一般217);贵州省气象局省市联合科研基金项目“基于高斯分布的风云卫星短临监测定量化冰雹识别指标研究”(黔气科合SS-QN[2024]03号);风云卫星应用先行计划(2023)-天气预报应用专项(FY-APP-ZX-2023.01);贵州省科技计划项目“基于相控阵双偏振雷达的贵州冰雹云识别研究”(黔科合基础-ZK[2023]一般200);中国气象局人工影响天气中心业务项目“FY3/4卫星云特性产品在西南防雹增雨中的应用示范(二期)”共同资助

Research on hail recognition using FY-2G satellite inversion products based on Kolmogorov data mining technology and SVM model

PENG Yuxiang1(), TANG Piru2(), ZHOU Yongshui1, LI Hao1, LIU Tao3, ZHANG Chao4, YU Yidan1, GUO Xi5   

  1. 1. Guizhou Meteorological Observatory, Guiyang 550081, China
    2. Guizhou Center for Ecology and Agricultural Meteorology, Guiyang 550002, China
    3. Guizhou Institute of Mountain Meteorological Science, Guiyang 550002, China
    4. Rongjiang County Meteorological Bureau of Guizhou Province, Rongjiang 552707, Guizhou, China
    5. Guizhou Meteorological Data Center, Guiyang 550002, China
  • Received:2024-05-14 Revised:2024-06-26 Online:2025-08-31 Published:2025-09-08

摘要:

冰雹识别技术研究对提前防御和减轻冰雹灾害具有重要意义。本文基于支持向量机(Support Vector Machine,SVM)模型和Kolmogorov变量筛选过滤器,利用FY-2G卫星的7项反演产品开展冰雹识别方法研究。以贵州省2020—2022年30个冰雹日368组未降雹点与降雹点FY-2G卫星反演产品数据作为数据集,分别基于Linear核函数、Radial Basis Function(RBF)核函数、Sigmoid核函数建立L-SVM模型、RBF-SVM模型、S-SVM模型开展冰雹识别,通过交叉检验提升模型冰雹识别结果的可靠性,并对识别准确率分布进行分析,利用Kolmogorov变量筛选过滤器优化模型输入参数。 结果表明:3种核函数SVM模型均能对降雹点和未降雹点进行有效识别,且准确率均超过70%。其中,RBF-SVM模型对总样本和未降雹点样本的识别准确率最高,分别为87.50%和91.85%;S-SVM模型对降雹点识别准确率最高(89.13%)。利用Kolmogorov变量筛选过滤器优化模型输入参数后,模型识别准确率有不同程度提升。对于未降雹点数据集,优化输入参数后RBF-SVM模型和S-SVM模型识别准确率均达92.93%;对于降雹点数据集,S-SVM模型识别效果最好;对于总数据集识别效果最好的是优化输入参数后的RBF-SVM模型。综合识别效果最好的是输入参数优化后的RBF-SVM模型,若识别降雹区域则主要关注S-SVM模型识别结果。

关键词: SVM, Kolmogorov变量筛选过滤器, 变量筛选, 冰雹识别, 核函数

Abstract:

Research on hail identification technology is of great significance for preventing and mitigating hail disasters in advance. In this paper, based on support vector machine (SVM) model and Kolmogorov variable filter, 7 inversion products of FY-2G satellite are used to study hail recognition algorithm. The inversion product data of 368 sets of non hail spots and hail spots from FY-2G satellite on 30 hail days in Guizhou Province from 2020 to 2022 were taken as the data set, and the L-SVM model, RBF-SVM model and S-SVM model were established based on Linear Kernel Function, Radial Basis Function (RBF) and Sigmoid Kernel Function, respectively, to carry out hail identification. The reliability of hail identification results of the model was improved through cross-checking, and the distribution of recognition accuracy was analyzed, and the Kolmogorov variable filter was used to optimize the input parameters of the model. The results show that three kernel function SVM models can effectively identify hail and non hail falling points, and the accuracy rate is more than 70%. Among them, the RBF-SVM model has the highest recognition accuracy for total samples and non-hail spot samples, which are 87.50% and 91.85%, respectively. The S-SVM model is the most accurate in identifying hail points, with an accuracy of 89.13%. When the Kolmogorov variable filter is used to optimize the input parameters of the models, the recognition accuracy of most models is improved to different degrees. For the non-hail point data set, when input parameters are optimized, the RBF-SVM model and S-SVM model have the best recognition effect, and the accuracy rate of both is 92.93%; for hail point data set, the recognition effect of the S-SVM model is the best; for total data set, the RBF-SVM model has the best recognition effect. Therefore, in the actual business of hail identification and early warning, the RBF-SVM model after input parameters optimization has the best comprehensive recognition effect. If the focus is to identify hail areas, the identification results of S-SVM model can be mainly concerned.

Key words: SVM, Kolmogorov variable filter, variable screening, hail identification, kernel function

中图分类号: