| [1] | 安琳莉, 黄建平, 任钰, 等, 2022. 中国北方旱区陆地水储量变化特征及其归因分析[J]. 干旱气象, 40(2):169-178. DOI
 | 
																													
																						| [2] | 黄珊, 杨扬, 王含嘉, 等, 2020. 中国西南地区地表感热和潜热通量时空变化特[J]. 干旱气象, 38(4): 601-611. | 
																													
																						| [3] | 马守存, 保广裕, 郭广, 等, 2018. 1982—2013年黄河源区植被变化趋势及其对气候变化的响应[J]. 干旱气象, 36(2): 226-233. DOI
 | 
																													
																						| [4] | 童瑞, 杨肖丽, 任立良, 等, 2015. 黄河流域1961—2012年蒸散发时空变化特征及影响因素分析[J]. 水资源保护, 31(3): 16-21. | 
																													
																						| [5] | 魏凤英, 1999. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社: 115-135. | 
																													
																						| [6] | 王澄海, 杨金涛, 杨凯, 等, 2022. 过去近60 a黄流流域降水时空变化特征及未来30 a变化趋势[J]. 干旱区研究, 39(3): 708-722. | 
																													
																						| [7] | 王丽娟, 2022. 蒸散及其关键参数的多源卫星遥感反演与应用研究[D]. 兰州: 兰州大学. | 
																													
																						| [8] | 吴佳, 高学杰, 2013. 一套格点化的中国区域逐日观测资料及与其他资料的对比[J]. 地球物理学报, 56(4): 1 102-1 111. | 
																													
																						| [9] | 肖风劲, 徐雨晴, 黄大鹏, 等, 2021. 气候变化对黄河流域生态安全影响及适应对策[J]. 人民黄河, 43(1): 10-14. | 
																													
																						| [10] | 徐宗学, 隋彩虹, 2005. 黄河流域平均气温变化趋势分析[J]. 气象, 31(11): 8-11. | 
																													
																						| [11] | 杨特群, 饶素秋, 陈冬伶, 2009. 1951年以来黄河流域气温和降水变化特点分析[J]. 人民黄河, 31(10): 76-77. | 
																													
																						| [12] | 杨扬, 杨启东, 王芝兰, 等, 2021. 中国区域陆气耦合强度的时空分布特征[J]. 干旱气象, 39(3): 374-385. | 
																													
																						| [13] | 张镭, 黄建平, 梁捷宁, 等, 2020. 气候变化对黄河流域的影响及应对措施[J]. 科技导报, 38(17): 42-51. | 
																													
																						| [14] | 张亚春, 马耀明, 马伟强, 等, 2021. 青藏高原不同下垫面蒸散量及其与气象因子的相关性[J]. 干旱气象, 39(3): 366-373. | 
																													
																						| [15] | 郑子彦, 吕美霞, 马柱国, 2020. 黄河源区气候水文和植被覆盖变化及面临问题的对策建议[J]. 中国科学院院刊, 35(1): 61-72. | 
																													
																						| [16] | CHADWICK R, GOOD P, WILLETT K, 2016. A simple moisture advection model of specific humidity change over land in response to SST warming[J]. Journal of Climate, 29(21): 7 613-7 632. DOI    
																																					URL
 | 
																													
																						| [17] | CHENG W, MMCMARTIN D G, DAGON K, et al, 2019. Soil moisture and other hydrological changes in a stratospheric aerosol geoengineering large ensemble[J]. Journal of Geophysical Research Atmospheres, 124(23):12 773-12 793. | 
																													
																						| [18] | FENG T C, SU T, JI F, et al, 2018. Temporal characteristics of actual evapotranspiration over China under global warming[J]. Journal of Geophysical research, 123: 5 845-5 858. | 
																													
																						| [19] | FISHER B, MELTON F, MIDDLETON E, et al, 2017. The future of evapotranspiration: global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources[J]. Water Resources Research, 53: 2 618-2 626. | 
																													
																						| [20] | GAO G, CHEN D L, XU C Y, et al, 2007. Trend of estimated actual evapotranspiration over China during 1960-2002[J]. Journal of Geophysical research, 112, D11120. DOI:10.1029/2006JD008010. DOI    
																																					URL
 | 
																													
																						| [21] | HERSBACH H, COAUTHORS, 2020. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 146(730): 1 999-2 049. | 
																													
																						| [22] | IPCC, 2019. Climate Change and land: an IPCC special report on climate change, desertification, degradationland, sustainable land management, securityfood, and greenhouse gas fluxes in terrestrial ecosystem[R/OL].(2019-08)[2023-05-29]. https://www.ipcc.ch/srccl/. | 
																													
																						| [23] | IPCC, 2021. Climate Change 2021:The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[M/OL]. United Kinodom and New York, NY USA: Cambridge University Press. https://www.ipcc.ch/report/ar6/wg1/. | 
																													
																						| [24] | JUNG M, REICHSTEIN M, CIAIS P, et al, 2010. Recent decline in the global land evapotranspiration trend due to limited moisture supply[J]. Nature, 467: 951-954. DOI
 | 
																													
																						| [25] | KOSTER R D, DIRMEYER P A, GUO Z, et al, 2004, Regions of strong coupling between soil moisture and precipitation[J]. Science, 305(5 687), 1 138-1 140. | 
																													
																						| [26] | LI C C, ZHANG Y Q, SHEN Y J, et al, 2020. LUCC-driven changes in gross primary production and actual evapotranspiration in North China[J]. Journal of Geophysical research, 125, e2019JD031705.DOI:10.1029/2019JD031705. DOI
 | 
																													
																						| [27] | LV M X, MA Z G, PENG S M, 2019. Responses of terrestrial water cycle components to afforestation within and around the Yellow River Basin[J]. Atmospheric and Oceanic Science Letters, 12: 116-123. DOI    
																																					URL
 | 
																													
																						| [28] | MADELEINE P C, JONH T R, HRISHIKESH A, et al, 2021. A 10 percent increase in global land evapotranspiration from 2003 to 2019[J]. Nature, 593: 543-547. DOI
 | 
																													
																						| [29] | MARTENS B, SCHUMACHER D L, WOUTERS H, et al, 2020. Evaluating the land-surface energy partitioning in ERA5[J]. Geoscientific Model Development, 13: 4 159-4 181. | 
																													
																						| [30] | QIAO L, ZUO Z, XIAO D, et al, 2021. Evaluation of soil moisture in CMIP6 simulations[J]. Journal of Climate, 35: 779-800. DOI    
																																					URL
 | 
																													
																						| [31] | SENEVIRATNE S I, CORTI T, DAVIN E L, et al, 2010. Investigating soil moisture-climate interactions in a changing climate: a review[J]. Earth-Science Reviews, 99(3):125-161. DOI    
																																					URL
 | 
																													
																						| [32] | WANG C, GRAHAM R M, WANG K, et al, 2019. Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea ice: effects on sea ice thermodynamics and evolution[J]. The Cryosphere, 13: 1 661-1 679. | 
																													
																						| [33] | WANG K, DICKINSON R, 2012. A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability[J]. Reviews of Geophysics, 50(2), RG2005. DOI: 10,1029/2011 RG000373. DOI
 | 
																													
																						| [34] | WU Z Y, FENG H H, HE H, et al, 2021. Evaluation of soil moisture climatology and anomaly components derived from ERA5-land and GLDAS-2.1 in China[J]. Water Resources Management, 35: 629-643. DOI
 | 
																													
																						| [35] | XU S, YU Z, YANG C, et al, 2018. Trends in evapotranspiration and their responses to climate change and vegetation greening over the upper reaches of the Yellow River Basin[J]. Agricultural and Forest Meteorology, 263: 118-129. DOI    
																																					URL
 | 
																													
																						| [36] | YANG Q, DAN L, LV M, et al, 2021. Quantitative assessment of the parameterization sensitivity of the Noah-MP land surface model with dynamic vegetation using ChinaFLUX data[J]. Agricultural and Forest Meteorology, 307(2), 108542. DOI:10.1016/j.agrformet.2021.108542. DOI    
																																					URL
 | 
																													
																						| [37] | YANG Z S, ZHANG Q, HAO X C, et al, 2019. Changes in evapotranspiration over global semiarid regions 1984-2013[J]. Journal of Geophysical research, 124: 2 946-2 963. | 
																													
																						| [38] | YUAN L, CHEN X L, MA Y M, et al, 2022. A monthly 0.01° terrestrial evapotranspiration product (1982-2018) for the Tibetan Plateau[J]. Earth System Science Data, DOI: 10.5194/eesd-2022-195. DOI
 | 
																													
																						| [39] | YUE P, ZHANG Q, YANG Y, et al, 2018. Seasonal and inter-annual variability of the Bowen smith ratio over a semiarid grassland in the Chinese Loess Plateau[J]. Agricultural and Forest Meteorology, 252: 99-108. DOI    
																																					URL
 | 
																													
																						| [40] | ZHANG K, KIMBALL J S, NEMANI R R, et al, 2015. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration[J]. Scientific Reports, 5, 15956. DOI:10.1038/srep15956. DOI    
																																																	PMID
 | 
																													
																						| [41] | ZHAO J, WEI L, YANG Y T, et al, 2017. Separating vegetation greening and climate change controls on evapotranspiration trend over the Loess Plateau[J]. Scentific Reports, 7, 8191. DOI:10.1038/s41598-017-08477-x. DOI
 |