[1] |
陈炯, 郑永光, 张小玲, 等, 2013. 中国暖季短时强降水分布和日变化特征及其与中尺度对流系统日变化关系分析[J]. 气象学报, 71(3): 367-382.
|
[2] |
刁秀广, 张磊, 孟宪贵, 等, 2020. 两次强降水风暴双偏振参量特征分析[J]. 海洋气象学报, 40(3): 27-36.
|
[3] |
刁秀广, 郭飞燕, 2021. 2019年8月16日诸城着急单体风暴双偏振参量结构特征分析[J]. 气象学报, 79(2): 181-195.
|
[4] |
刘黎平, 葛润生, 张沛源, 2002. 双线偏振多普勒天气雷达遥测降水强度和液态含水量的方法和精度研究[J]. 大气科学, 26(5): 709-719.
|
[5] |
高晓梅, 孙雪峰, 秦瑜蓬, 等, 2018. 山东一次强对流天气的环境条件和对流风暴特征[J]. 干旱气象, 36(3): 447-455.
DOI
|
[6] |
潘赫拉, 许东蓓, 陈明轩, 等, 2020. 天气雷达气候学研究新进展[J]. 干旱气象, 38(6): 887-894.
|
[7] |
魏庆, 胡志群, 流黎平, 等, 2016. C波段偏振雷达数据预处理及在降水估计中的应用[J]. 高原气象, 35(1): 594-601.
|
[8] |
荀爱萍, 张伟, 黄惠镕, 等, 2019. 厦门市S波段双偏振雷达测雨效果分析[J]. 气象与环境科学, 42(4): 103-110.
|
[9] |
俞小鼎, 郑永光, 2020. 中国当代强对流天气研究与业务进展[J]. 气象学报, 78(3): 391-418.
|
[10] |
俞小鼎, 周小刚, 王秀明, 2012. 雷暴与强对流临近天气预报技术进展[J]. 气象学报, 70(3): 311-337.
|
[11] |
杨吉, 郑媛媛, 徐芬, 2020. 江淮地区一次冰雹过程的双线偏振雷达观测分析[J]. 气象学报, 78(4): 568-579.
|
[12] |
张培昌, 魏鸣, 黄兴友, 等, 2018. 双线偏振多普勒天气雷达探测原理与应用[M]. 北京: 气象出版社: 38-49.
|
[13] |
郑永光, 陶祖钰, 俞小鼎, 2017. 强对流天气预报的一些基本问题[J]. 气象, 43(6): 641-652.
|
[14] |
张羽, 胡东明, 李怀宇, 2017. 广州双偏振天气雷达在短时强降水中的初步应用[J]. 广东气象, 39(2): 26-29.
|
[15] |
郑铮, 潘灵杰, 钱燕珍, 等, 2021. 台风“利奇马”造成浙江沿海极端强降水的演变特征[J]. 干旱气象, 39(2): 269-278.
|
[16] |
HALL M P M, CHERRY S M, GODDARD J W F, et al, 1980. Rain drop sizes and rainfall rate measured by dual-polarization radar[J]. Nature, 285(5762): 195-198.
DOI
URL
|
[17] |
HUBBERT J C, WILSON J W, WECKWERTH T M, et al, 2018. S-Pol’s polarimetric data reveal detailed storm features (and insect behavior)[J]. Bulletin of the American Meteorological Society, 99(10): 2 045-2 060.
DOI
URL
|
[18] |
KUMJIAN M R, 2013a. Principles and applications of dual-polarization weather radar. Part II: warm-and cold-season applications[J]. Journal of Operational Meteorology, 1 (20): 243-264.
DOI
URL
|
[19] |
KUMJIAN M R, 2013b. Principles and applications of dual-polarization weather radar. Part I: description of the polarimetric radar variables[J]. Journal of Operational Meteorology, 1(19): 226-242.
DOI
URL
|
[20] |
KUMJIAN M R, RYZHKOV A V, PHILLIPS V T, 2014. The anatomy and physics of ZDR columns: investigating a polarimetric radar signature with a spectral bin microphysical model[J]. Journal of Applied Meteorology and Climatology, 53(7): 1 820-1 842.
DOI
URL
|
[21] |
SACHIDANANDA M, ZRNIC D S, 1987. Rain rate estimates from differential polarization measurements[J]. Journal of Atmospheric and Oceanic Technology, 4: 588-598.
DOI
URL
|
[22] |
SNYDER J C, BLUESTEIN H B, DAWSON D T, II, et al, 2017. Simulations of polarimetric, X-band radar signatures in supercells. Part II:ZDR columns and rings and KDP columns[J]. Journal of Applied Meteorology and Climatology, 56(7): 2 001-2 026.
DOI
URL
|
[23] |
SUN J Z, ZHANG Y, BAN J M, et al, 2020. Impact of combined assimilation of radar and rainfall data on short-term heavy rainfall prediction: a case study[J]. Monthly Weather Review, 148(5): 2 211-2 232.
DOI
URL
|
[24] |
Van LIER-WALQUI M, FRIDLIND A M, ACKERMAN A S, et al, 2016. On polarimetric radar signatures of deep convection for model evaluation: columns of specific differential phase observed during MC3E[J]. Monthly Weather Review, 144(2): 737-758.
DOI
URL
|