基于前馈神经网络的多模式集成降水预报研究
朱文刚, 盛春岩, 范苏丹, 荣艳敏, 曲美慧

Research on multi-model integrated precipitation forecast based on feed forward neural network
ZHU Wengang, SHENG Chunyan, FAN Sudan, RONG Yanmin, QU Meihui
图7 不同模式和不同方案预报2020年4—9月山东省24~48 h累积降水量的TS评分(a)、漏报率(b)、空报率(c)、Bias评分(d)和ETS评分(e)
Fig.7 Threat score (a), miss rate (b), false alarm rate (c), bias score (d) and equitable threat score (e) of 24-48 h cumulative precipitation predicted by different models and different schemes in Shandong Province from April to September 2020